Историческая справка...
Выхлопные газы автомобилей - один из главных источников загрязнения окружающей среды. Создание экологически чистых, так называемых "зелёных" автомобилей, - главная проблема, над решением которой работают автостроители многих стран. Непрерывный рост стоимости бензина также стимулирует работы по изысканию альтернативных, экологически чистых видов топлива.
www.bydauto.com.cn
– Китайский гибрид |
Многие аналитики высказывают мнение, что через несколько лет компании, у которых в производственных программах не будет моделей с гибридными установками, начнут терять покупателей. Из общих экономических соображений можно полагать, что рост выпуска спорт-универсалов и минивэнов с гибридными двигателями будет обгонять аналогичные седаны.
Одновременно ведущие автостроители форсируют создание машин с топливными элементами:
Следующей цепочкой получения энергии для автомобиля может стать следующая: зерно, спирт, водород, топливная ячейка, электродвигатель автомобиля при полном отсутствии двигателя внутреннего сгорания.
|
|
|
|
|||||
зерно |
спирт |
водород |
топливная ячейка |
электро автомобиль |
Как видно из этой схемы, необходимость в двигателе внутреннего сгорания отсутствует полностью, поскольку электрическая энергия получена путем химической реакции. Отсутствие двигателя внутреннего сгорания и наличие электромотора, который уже сам по себе обладает значительным моментом даже на низких оборотах значительно облегчит и упростит конструкцию автомобиля и сделает его еще более «зеленым».
Схематически топливный элемент представляет электрохимическую ячейку, в которой два электрода из пористого углерода с нанесённым катализатором разделены полимерной мембраной. Подаваемый под давлением водород взаимодействует на катоде с ионами гидроксила с образованием воды и выделением свободных электронов. На аноде кислород из воздуха взаимодействует с ионами водорода и поступающими от катода в виде тока электронами. При таком электрохимическом процессе выделяется тепло и образуются вода и электроток.
Впервые появление электротока при реакции водорода с кислородом наблюдалось ещё в 1839 году. Практическая реализация процесса была осуществлена сравнительно недавно при создании космической техники. Чтобы можно было приступить к созданию автомобилей с топливными элементами, пришлось преодолевать самые разные технические проблемы, ряд которых ещё не доведен до промышленно-приемлемого решения. Тем не менее уже созданы опытные образцы машин с транспортировкой водорода в баллонах или химически связанного в метиловом спирте (метаноле).
Высокая стоимость первых вариантов автомобилей на топливных элементах была обусловлена применением катализаторов на основе редких металлов (платина и др.) и сложной системой хранения жидкого водорода при весьма низкой температуре. Дополнительные сложности возникали при стоянке машины на солнце, когда начинаются тепловые потери водорода в системе топливных элементов. Для накопления опыта, необходимого для решения возникающих технических задач, в 2000 году была начата эксплуатация шести автобусов в Чикаго и Ванкувере (Британская Колумбия, Канада). Канадская компания Ballard Power Systems, созданная в 1979 году со штаб-квартирой в Ванкувере, лидирует сейчас по созданию топливных элементов для автомобилей.
Хранение водорода под давлением вызывает другие проблемы, в том числе и возможность взрыва при утечке водорода. В связи с этим системы, где источником водорода является метиловый спирт, представляются более перспективными. С применением в качестве топлива метанола взамен жидкого водорода упрощается система хранения топлива в автомобиле, и заправка может осуществляться на колонках на обычных автозаправках.
DymlerChrysler намерен в 2003 году изготовить для опытной эксплуатации партию автомобилей NECAR-3 с топливными элементами на метаноле и запасом хода между двумя заправками 400 миль.
У модели Ford Mondeo P2000 FC5 400 топливных ячеек на метаноле массой 172 кг расположены под капотом. При температуре 85 градусов Цельсия начинается реакция образования водорода из метанола. Электромотор мощностью 120 л.с. обеспечивает достижение максимальной скорости 145 км/час. Время разгона после трогания с места до скорости 100 км/час - 14 сек. Запас хода - 160 км, возможная стоимость - 35 тыс. доларов. Алюминиевый кузов машины на 40% легче стального, а магниевый картер легче алюминиевого. До запуска в производство в 2004 году создатели машины рассчитывают снизить цену до 15 тыс. долларов.
Японские компании Toyota и Honda объявили, что они начнут опытно-промышленное производство легковых автомобилей с топливными элементами в 2003 году. Японская Mazda и немецкая BMW также объявили о своих работах по созданию транспортных средств с топливными элементами. В штате Нью-Джерси независимая от больших компаний группа инженеров создала опытную модель New Jersey Ventures с применением системы из топливных элементов и никель-кадмиевых батарей. При первых пробегах этот автомобиль развивал скорость 120 миль/час.
Но возникают новые сложности, связанные с техническими и экономическими проблемами выделения водорода из метанола непосредственно в силовом агрегате автомобиля. После стоянки с неработающим двигателем требуется около двух минут, чтобы вся система начала работать снова. Также следует опасаться возможности отравления метанолом. Выпитый в небольшом количестве метанол вызывает слепоту. С другой стороны, метанол может получаться при химической переработке морских водорослей и отходов сельского хозяйства, то есть относится к воспроизводимым сырьевым ресурсам.
Неумолимая экономика стимулирует развитие промышленного производства другого спирта - гидролизного этилового спирта (этанола) также из возобновляемых отходов лесоперерабатывающей и сельскохозяйственной отраслей и массовое внедрение двигателей внутреннего сгорания, работающих на смесях, содержащих свыше 50% этанола.
В заключение выскажу мнение, что ближайшие 10--20 лет будут периодом массового производства автомобилей, работающих с применением альтернативных видов топлива, в первую очередь сжиженного газа и этилового спирта, при одновременном выпуске большого числа различных моделей с гибридными двигателями. Параллельно будет идти совершенствование конструкций и технологий изготовления двигателей на топливных элементах. Скорее всего, через 30-50 лет в автомобилестроении автомобили на топливных ячейках вытеснят двигатели внутреннего сгорания.
Конкуренция двигателей может быть интереснее многих детективных историй.
Ford Model U concept car
Toyota FINE-S
Nissan X-Trail
Fuel Cell Vehicle
General Motors
HydroGen3
Топливные ячейки способны запасать большее количество энергии, чем существующие батареи, занимая такое же пространство. Даже самые передовые батареи имеют на порядок меньшее значение удельной энергии, чем у накопителя водородного топлива. Однако пока проще создавать именно батареи малого размера, а не помпы и контролирующую электронику для топливных ячеек. А малоразмерные помпы часто потребляют больше энергии, чем производят.
"Установка помпы, датчика давления и электроники для контроля системы в таком малом объеме не практична", — говорит Саид Могхаддам (Saeed Moghaddam) из Университета Иллинойса. "К тому же, если они все-таки смогут вырабатывать энергию, их потребление вероятно будет превышать объем генерируемой энергии". Поэтому Могхадамм вместе со своими университетскими коллегами включился в работу над созданием такой конструкции крошечных топливных элементов, которая бы позволяла генерировать энергию, не потребляя ее на собственные нужды.
Новое устройство имеет всего 4 элемента. Тонкая мембрана отделяет водный резервуар сверху от камеры с металл-гидридом, расположенной под ним. Еще ниже расположены электроды. Небольшие отверстия в мембране позволяют молекулам воды проникать в соседнюю камеру в виде пара. Затем пары воды вступают в реакцию с металл-гидридом, в результате которой образуется водород. Он заполняет эту камеру и оказывает давление на мембрану снизу, и отверстия в мембране перекрываются. Водород постепенно расходуется в результате протекания реакций на электродах для получения электрического тока. Затем давление водорода падает, и вода снова начинает поступать в камеру для совершения дальнейших реакций.
Это устройство размером всего 3 х 3 мм и толщиной в 1 мм невесомо, а контроль над поступлением воды осуществляется автоматически. При этом ячейка сохраняет работоспособность при тряске, что дает возможность использовать ее в карманных устройствах. Первый образец генерировал напряжение 0,7 В и ток величиной 0,1 мА в течение 30 часов, но Могхаддам говорит, что последние версии выдают уже 1 мА при том же напряжении. Но этого не хватит для питания мобильных телефонов, которые используют батареи на несколько вольт, а вот в простых электронных системах и микророботах их уже вполне можно использовать.
"Всего 9 мм3 — это безусловно очень немного", — говорит Стив Арскотт (Steve Arscott) из Университета Лилля, эксперт в топливных микроячейках. "Однако мощность этих ячеек слишком мала, чтобы они могли быть действительно полезны", — добавляет Арскотт. Его собственные топливные микроячейки используют метанол, а не воду качестве источника водорода, как делают многие микроячейки. При этом ее объем в 3 раза больше размеров ячейки Могхаддама, а ее удельная мощность превышает более чем в 10 раз и составляет 0,13 мВт/мм2.
Но эксперты указывают, что эти два устройства нельзя между собой сравнивать. Большинство топливных ячеек получают питание извне, в то время как новое устройство расходует топливо, помещенное внутри него. При этом большой запас топлива в ячейке требует много пространства, что приводит к падению удельной мощности. Однако в зависимости от размеров удельная мощность нового топливного элемента все же сравнительно высока — 100 ватт на литр.
Список
литературы
1. |
Costamagna P., Srinivasan S.//J. Power Sources.
2001. V.
102. № 1/2. P. 253-269. |
|
2. |
Astanovsky D.L., Astanovsky L.Z., Raikov B.S., Korchaka N.I. II Intern. J. Hydrogen
Energy. 1994. V. 19. № 8. P. 677-681. |
|
3. |
Snytnikov P.V., Sobyanin VA., Belyaev V.D. et al.//Appl. Catal. A: General. 2003. V.
239. № 1/2. P. 149-156. |
|
4. |
Yu Н.,
Нои Z., Yi В., Lin Z.//J. Power Sources.
2002. V.
105. № LP. 52-57. |
|
5. |
Song С II Catal.
Today. 2002.
V. 77. № 1/2. P. 17-49. |
|
6. |
Worner A., Friedrich C, Tamme R. II Appl. Catal. A: General. 2003. V. 245. № 1. P. 1-14. |
|
7. |
Lee S.H., Han J.,
Lee K.-Y.//J. Power Sources.
2002. V.
109. № 2. P. 394-402. |
|
8. |
Costamagna P., Srinivasan S. II J. Power Sources, 2001. V. 102. № 1/2. P. 242-252. |
|
9. |
Carmo M., Paganin VA., Rosolen J.M., Gonzalez E.R.//J. Power Sources.
2005. V.
142. № 1/2. P. 169-176. |
|
10. |
Ralph T.R., Hogarth M.P.//Platinum Metal Rev. 2002. V.46.№3.P. 117-135. |
|
11. |
Kornyshev A.A., Kulikovsky A A. I I Electrochim. acta. 2001. V. 46. № 28. P.
4389-4395. |
|
12. |
Kulikovsky A.A., Kucernak A., Kornyshev AA.//Electrochim. acta. 2005. V. 50. № 6. P. 1323-1333. |
|
13. |
Григорьев
С.А., Аланакян Ю.Р., Фатеев В.Н., Русанов В.Д. II
ДАН. 2002. Т. 382. № 4. С. 488-191. |
|
14. |
Григорьев
С.А., Калинников
А.А., Порембский
В.И. и др. II Электрохимия. 2004. Т. 40. № 11. С. 1284-1289. |
|
|
Исследователи из Японии разработали топливную ячейку, которая может размещаться на чипе и производить энергию за счет различных спиртов.
Микрокапиллярная топливная ячейка может приводиться в действие с помощью различных спиртов. (Рисунок из Energy Environ. Sci., 2009, DOI: 10.1039/b906216e)
Многие исследовательские группы работают над миниатюризацией обычных топливных ячеек, однако до настоящего времени эти источники тока не удается совместить с обычными микроэлектронными устройствами.
Тецуя Осака (Tetsuya Osaka) из Университета Васеда разработал микрокапиллярную топливную ячейку без насоса-нагнетателя и мембраны, окислителем топлива которой может являться кислород воздуха. Новое устройство не состоит из частей – оба его электрода созданы из одного и того же субстрата, что, несомненно, должно облегчить ее производство.
Первоначально Осака разработал топливную ячейку, работающую на метаноле. Метанол подходит для длительного питания топливных ячеек, поэтому японский ученый изучил возможность применения этанола и пропанола-2 в качестве топлива. Из трех изученных спиртов наименьшей токсичностью отличается этанол, однако при окислении 2-пропанола не образуется моноксида углерода, способного отравить катализатор. Было обнаружено, что замена метанола на этанол или пропанол практически не меняет КПД топливной ячейки. Исследователь из Японии внес еще одно конструкционное изменение в источник тока – заменил кислотный электролит на фосфатный буфер, при этом переход от кислой к нейтральной среде также существенно увеличил энергетический выход.
Мембраны для топливных элементов из проводимых MOF
Канадские исследователи заявляют, что кристаллические соединения нового типа могут увеличить производительность топливных элементов. Полученные ими токопроводящие металлоорганические каркасные структуры [metal organic frameworks (MOF)] могут быть использованы для получения мембран, разделяющих газы в протонообменных топливных элементах мембранного типа.
Строение новых металлоорганических каркасных структур. (Серый – C, красный – O, желтый – S, синий – Na (Рисунок из Nature Chem., 2009, DOI: 10.1038/NCHEM.402)
Молекулярные губки MOF чаще всего рассматриваются как потенциальные материалы для хранения газов, в том числе и водорода, а также для улавливания диоксида углерода. Однако Джордж Симудзу (George Shimizu) из Университета Калгари решили использовать MOF для решения более сложной задачи – высокотемпературной проводимости протонов.
Протонобменная мембран представляет собой изолирующий материал, расположенный между двумя электродами топливного элемента, разделяющего водород и воздух и позволяющих проходить через него протонам, но не электронам. Самая сложная задача в технологии топливных элементов – создание проводящих протоны мембран, функционирующих при оптимальной рабочей температуре топливного элемента – около 100°C. Разработанная ирландскими исследователями MOF – органилсульфонат PCMOF2, строение которой похоже на строение пчелиных сот, может справиться с этой непростой задачей.
Сульфонатные атомы кислорода нового материала могут способствовать переносу протонов за счет системы водородных связей. По словам Симудзу высокотемпературная протонная проводимость нового материала заключается в особенности строения его пор.
Симудзу отмечает, что при загрузке внутреннего объема
PCMOF2 водой наблюдается низкотемпературная протонная проводимость, а
замена воды на триазол обеспечивает высокую
проводимость нового материала, в этом случае протонная проводимость наблюдается
при 150°C. Триазол, как и вода отличается амфотерными свойствами и может служить «проводником»
протонов, однако меньшая летучесть обеспечивает возможность его работы при
температурах более 100 C, размеры триазола
способствуют тому, что это соединение блокирует поры MOF и не дает газам в приэлектродных пространствах смешиваться между собой.
Источник: Nature Chem., 2009, DOI: 10.1038/NCHEM.402
newrusnano.explosion.ru/sadm_files/disk/Docs/.../42%20(3).pdf
Биоэтанол как перспективное топливо для энергоустановок на основе топливных элементов [Текст] /В. А. Кириллов [и др. ] // Теоретические основы химической технологии. - 2008. - Т. 42, N 1. - С. 3-13. - Библиогр.: с. 12-13 (42 назв. ) . - ISSN 0040-3571 УДК ^a66 ББК 35 Рубрики: Химическая технология Общие вопросы химической технологии Кл.слова (ненормированные): биэтанол -- топливные элементы -- энергоустановки -- каталитические реакции -- водородсодержащие газы -- конверсия -- паровая конверсия Аннотация: Проведено изучение каталитической реакции паровой конверсии биэтанола в диапозоне температур 300-700 градусов С с целью переработки в водородсодержащий газ. Роль исследований возросла в последнее время в связи с разработкой высокотемпературных топливных элементов.