ПРОЕКТИРОВАНИЕ ВАКУУМ-ВЫПАРНОЙ УСТАНОВКИ

УЧЕБНОЕ ПОСОБИЕ ДЛЯ СТУДЕНТОВ ЗАОЧНОЙ ФОРМЫ ОБУЧЕНИЯ

САНКТ-ПЕТЕРБУРГ СИНТЕЗ 2009

О.П.Банных, Е.И.Борисова, В.А.Константинов, О.Н.Круковский, О.В.Муратов, В.Ф.Фролов, В.В.Фомин

ПРОЕКТИРОВАНИЕ ВАКУУМ-ВЫПАРНОЙ УСТАНОВКИ

Рецензент:

Зав. кафедрой теоретических основ химического машиностроения Санкт-Петербургского государственного технологического института д-р техн. наук, проф. H.A. Мариулевич

О.П.Банных, Е.И.Борисова, В.А.Константинов, О.Н.Круковский, О.В.Муратов В.Ф.Фролов, В.В.Фомин

Ф 912 **"Проектирование вакуум-выпарной установки"**. — Учебное пособие для студентов заочной формы обучения. — СПб, СПбГТИ(ТУ), 2009.- ил. 2, табл. 18, библиогр. 10 назв. - 50 с. ISBN 5–93808–039–8

Содержатся теоретические материалы, необходимые для выполнения курсового проекта по процессам и аппаратам химической технологии по теме « Проектирование вакуум-выпарной установки». Рассмотрен подробный пример расчета вакуум-выпарной установки. В приложении приведены формулы для расчета основных теплофизических параметров растворов и справочные таблицы, необходимые для выбора стандартного оборудования. В учебном пособии содержатся задания на проектирование.

Пособие соответствует рабочей программе курса «Процессы и аппараты химической технологии» для студентов заочной формы обучения химикотехнологических и механических специальностей.

 Φ —2802000000-007 Без объявл. 050(01)-03

ISBN 5-93808-039-8

© СИНТЕЗ, 2009

СОДЕРЖАНИЕ

Введение	4
1 Содержание курсового проекта	4
2 Основные сведения о процессе выпаривания	6
2.1 Общие положения	6
2.2 Аппаратурное оформление процесса выпаривания	6
2.3 Основные зависимости и расчетные формулы	8
3 Пример расчета	16
3.1 Технологическая схема установки	<u>~16</u>
3.2 Расчет выпарного аппарата	18
3.3 Расчет барометрического конденсатора смешения	28
3.4 Расчет вакуум-насоса	30
3.5 Ориентировочный расчет теплообменных аппаратов	30
3.6 Выводы	33
4 Задание на проектирование	34
Литература	36
Приложение А Формулы для расчета теплофизических параметров растворов	37
Приложение Б Справочные таблицы	42
Приложение В Основные размеры и технические характеристики оборудования	47

ВВЕДЕНИЕ

Основная цель курсового проектирования - систематизация, закрепление, расширение теоретических знаний, развитие навыков самостоятельной работы по комплексному решению инженерных задач и использованию специальной научнотехнической литературы. Курсовой проект по процессам и аппаратам химической технологии завершает изучение общеинженерных дисциплин и является основой курсовых и дипломных проектов по специальности

Учебное пособие содержит теоретические и справочные материалы, необходимые для самостоятельного выполнения студентами заочной формы обучения курсового проекта по теме "Проектирование вакуум-выпарной установки".

В пособии изложены методики расчета выпарного аппарата и вспомогательного оборудования: барометрического конденсатора, вакуум-насоса, холодильника и подогревателя. Приведенные методики проиллюстрированы подробным примером расчета. Пособие содержит справочные данные, необходимые как для расчета теплофизических параметров, так и для выбора стандартного оборудования по каталогам.

1 СОДЕРЖАНИЕ КУРСОВОГО ПРОЕКТА

В курсовом проекте выполняется проектная разработка основной аппаратуры с обязательными в каждом проекте технологическими, тепловыми и гидравлическими расчетами.

Технологическая документация к курсовому проекту состоит из пояснительной записки объемом 20-30 страниц текста и графической части: чертежа теплообменного аппарата (формата A1) и технологической схемы (формата A2).

Пояснительная записка должна быть написана (напечатана) на одной стороне листа A4. Ширина полей: слева – 30мм, справа – 20мм, сверху и снизу – 10мм.

Текст пояснительной записки состоит из нескольких разделов и подразделов и вне зависимости от темы проекта пояснительная записка должна включать:

- титульный лист;
- задание на проектирование;
- содержание пояснительной записки;
- введение;
- -технологическую часть;
- -инженерные расчеты;
- выводы;
- приложение.

Во введении оценивается значение рассматриваемого процесса в химической технологии и указываются области его применения.

В технологической части следует описать разработанную в соответствии с заданием технологическую схему установки.

В инженерных расчетах с использованием уравнений материального и теплового балансов определяют расходы веществ, составы и температуры получаемых продуктов, расходы теплоносителей — пара, охлаждающей воды. По кинетическим уравнениям теплопередачи рассчитывают основные размеры аппарата и вспомогательного оборудования, завершающиеся их выбором по каталогам.

В выводах излагаются основные результаты выполненной курсовой работы.

Список литературы включает те источники, на которые дается ссылка в пояснительной записке.

Чертеж общего вида теплообменного аппарата, указанного в задании, выполняется на уровне технического проекта на листе формата A1. Он дает представление о конструкции аппарата, взаимодействия его составных частей и поясняет принцип работы аппарата.

На чертеже должны быть даны общий вид теплообменника, разрезы, сечения, основные размеры — конструктивные, габаритные, таблица назначения штуцеров, техническая характеристика аппарата, технические требования, перечень основных частей аппарата. Чертеж выполняется в соответствии с требованиями ЕСКД.

Главный вид теплообменника в рабочем положении располагают вдоль большей стороны листа, на остальной части располагают другие виды, а также разрезы, сечения, дающие полное представление об аппарате. Основные виды выполняются в одинаковом масштабе. Над основной надписью помещают технические требования, предъявленные к изготовлению аппарата, со ссылками на соответствующие материалы (ГОСТ, ОСТ, ТУ).

Технологическая схема, прилагаемая к пояснительной записке, должна дать представление о данном процессе. На листе формата A2 помещают схему соединения элементов, перечень её элементов, технологическую характеристику аппарата и вспомогательного оборудования, обозначение трубопроводов и характеристику состояния потоков в них. Схема занимает основную часть поля чертежа, располагается слева и выполняется без соблюдения масштаба.

буквенно-цифровым Каждый снабжается обозначением, элемент схемы отражающим наименование элемента схемы и его порядковый номер в пределах группы однотипных элементов с одинаковым буквенным обозначением. Порядковые номера присваиваются в порядке расположения элементов на схеме сверху вниз и направлении слева направо. Изображение элементов выполняют сплошными линиями толщиной 0,3 -0,5 мм. Линии связи - трубопроводы – изображают сплошными линиями, их толщина в 2 – 3 раза больше линий в изображениях аппаратов. Основные магистральные трубопроводы (пар, вода) располагают вверху и внизу схемы горизонтально. Линиям связи присваивается цифровое обозначение. Порядок присвоения номеров: вначале нумеруют потоки рабочей среды, затем - линии воды, пара и в последнюю очередь линии конденсата и оборотной воды.

Перечень элементов схемы выполняются в виде таблицы, в которую их записывают группами в алфавитном порядке буквенных обозначений, а в пределах группы — в порядке возрастания порядковых номеров. В графах таблицы указывают: позиционное обозначение, наименование элемента, количество и примечание, в котором приводятся основные размеры элемента.

2 ОСНОВНЫЕ СВЕДЕНИЯ О ПРОЦЕССЕ ВЫПАРИВАНИЯ

2.1 Общие положения

Выпаривание — это процесс повышения концентрации растворов нелетучих веществ путем частичного испарения растворителя при кипении раствора и отвода образующихся паров.

Теплота для процесса выпаривания может подводиться с помощью различных промышленных теплоносителей [1,2,3]. Наибольшее применение находит насыщенный водяной пар, характеризующийся высокими значениями удельной теплоты конденсации и коэффициента теплоотдачи. Этот пар называют греющим или первичным . Пар, образующийся при кипении раствора, называется вторичным паром.

Процессы выпаривания проводят под вакуумом, под избыточным давлением или при атмосферном давлении. Выбор давления связан со свойствами выпариваемого раствора и возможностью использования теплоты вторичного пара.

При выпаривании под вакуумом снижается температура кипения раствора, что дает возможность использовать первичный пар с низкими параметрами. Этот способ применяется также при концентрирования растворов веществ, склонных к разложению при повышенных температурах.

Выпаривание под избыточным давлением применяется при концентрировании термически стойких веществ. Сравнительно высокая температура образующегося вторичного пара дает возможность использовать его для других технологических целей. При выпаривании под атмосферным давлением вторичный пар обычно выбрасывается в атмосферу.

2.2 Аппаратурное оформление процесса выпаривания

Процесс выпаривания проводят в выпарных аппаратах. В промышленности широко используются трубчатые выпарные аппараты: с организованной циркуляцией раствора (естественной или принудительной) и пленочные. Выбор конструкции выпарного аппарата зависит от технологических требований к процессу выпаривания и от физико-химических свойств растворов [4,7].

На рисунке 1 представлен выпарной аппарат с естественной циркуляцией раствора и вынесенной греющей камерой. Аппарат состоит из следующих основных элементов: греющей камеры, сепаратора, циркуляционной трубы и брызгоотделителя.

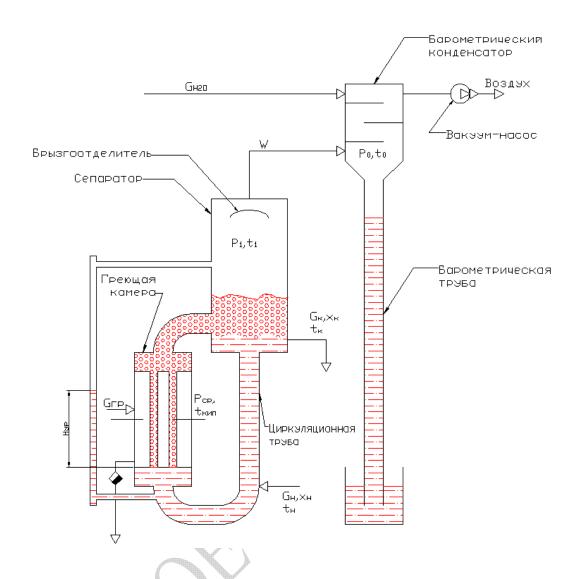


Рисунок 1- Схема работы выпарного аппарата

Греющий пар подают в межтрубное пространство греющей камеры, где он конденсируется, конденсат выводится из нижней части межтрубного пространства греющей камеры. Теплота, выделяющаяся при конденсации насыщенного пара, передается через стенки кипятильных трубок раствору. В трубах греющей камеры раствор нагревается и кипит с образованием вторичного пара. Эта парожидкостная смесь, поступает в сепаратор выпарного аппарата, где происходит отделение пара от раствора.

В брызгоотделителе от вторичного пара отделяются мелкие брызги раствора, не удаленные в сепараторе, затем пар выводится из верхней части аппарата.

Вследствие различия плотностей сред в циркуляционной трубе и кипятильных трубах греющей камеры в аппарате возникает направленная естественная циркуляция раствора, при которой раствор по циркуляционной трубе опускается вниз, а по кипятильным трубкам поднимается вверх. Организованная циркуляция раствора способствует увеличению коэффициента теплоотдачи к кипящему раствору и замедляет процесс образования накипи в кипятильных трубах. Исходный (разбавленный раствор)

подают в циркуляционную трубу. Концентрированный раствор выводят из нижней части сепаратора.

При проведении процесса выпаривания под вакуумом требуется дополнительное оборудование: барометрический конденсатор с барометрической трубой и вакуум-насос.

Барометрический конденсатор - это смесительный теплообменный аппарат, в котором теплообмен между теплоносителями происходит при их непосредственном контакте [1]. В результате смешения поступающего в конденсатор вторичного пара и охлаждающей воды, происходит конденсация пара. Так как, объем образующегося конденсата существенно меньше (примерно в тысячу раз) объема пара, то в барометрическом конденсаторе возникает вакуум. Для поддержания вакуума необходимо удалять из конденсатора воздух, который попадает туда с охлаждающей водой, а также через неплотности конструкции конденсатора. Для этой цели используется вакуум-насос. Смесь конденсата и охлаждающей воды самотеком выводится из конденсатора через барометрическую трубу, погруженную в жидкость для создания гидравлического затвора, препятствующего проникновению в конденсатор атмосферного воздуха.

2.3 Основные зависимости и расчетные формулы

2.3.1 Расчет выпарного аппарата

Уравнения материального баланса процесса выпаривания

$$G_{\mu} = G_{\kappa} + W \,, \tag{1}$$

$$G_{\nu} \cdot x_{\nu} = G_{\nu} \cdot x_{\nu} \,, \tag{2}$$

 G_{H} - массовый расход начального раствора, кг/с;

 G_{κ} - массовый расход конечного раствора, кг/с;

W- массовый расход вторичного пара, кг/с;

где

 x_{H} - массовая концентрация начального раствора, кг раств. вещества/кг раствора;

 x_{κ} - массовая концентрация конечного раствора, кг раств. вещества/кг раствора.

Тепловая нагрузка выпарного аппарата

$$Q = Q_{\text{nap.}} + Q_{\text{ncn.}} + Q_{\text{nom.}} = G_{\text{n}} \cdot c_{\text{n}} (t_{\kappa} - t_{\text{n}}) + W \cdot r_{\text{sm.n.}} + Q_{\text{nom.}},$$
(3)

где Q - расход теплоты на процесс выпаривания, B_{T} ;

 $Q_{\text{нагр.}}$ - расход теплоты на нагрев раствора, Вт;

 Q_{ucn} -расход теплоты на испарение растворителя, Вт;

 $Q_{nom.}$ - потери теплоты в окружающую среду, Вт;

 c_{H} - удельная теплоемкость начального раствора, Дж/кг·К;

 t_{H} - температура начального раствора на входе в выпарной аппарат, ${}^{\circ}\mathrm{C}$;

 t_{κ} - температура конечного раствора на выходе из аппарата, °C;

 $r_{em.n.}$ - удельная теплота конденсации вторичного пара, Дж/кг.

При расчете выпарных аппаратов потери теплоты в окружающую среду $Q_{nom.}$ обычно принимают в размере (3-5)% от суммы ($Q_{haep.} + Q_{ucn.}$)[4,5].

Расход греющего пара в выпарном аппарате

$$G_{cp.n.} = \frac{Q}{r_{cp.n.} \cdot x},\tag{4}$$

где $G_{cp.n.}$ - расход греющего пара, кг/с;

 $r_{cp.n.}$ - удельная теплота конденсации греющего пара, Дж/кг·К x - степень сухости пара.

Удельный расход греющего пара

$$d = \frac{G_{cp,n}}{W},\tag{5}$$

где d – удельный расход греющего пара, кг пара/ кг воды.

Давление в среднем слое выпариваемого раствора в кипятильных трубах

$$P_{cp.} = P_1 + 0.5 \rho_p \cdot g \cdot H_{yp.}, \tag{6}$$

где $P_{cp.}$ - давление в среднем слое выпариваемого раствора, Па; ρ_p – плотность раствора конечной концентрации при температуре кипения, кг/м³; $H_{vp.}$ - высота уровня раствора в кипятильных трубах, м.

Оптимальная высота уровня раствора в кипятильных трубах выпарного аппарата с естественной циркуляцией

$$H_{onm.} = (0.26 + 0.0014(\rho_p - \rho_e)) \cdot H_{mp.}, \tag{7}$$

где $H_{onm.}$ — оптимальная высота уровня раствора в кипятильных трубах, м; ρ_p — плотность раствора конечной концентрации при температуре кипения, кг/м³; $\rho_{\it g}$ — плотность воды при температуре кипения, кг/м³; $H_{\it mp.}$ — рабочая высота труб, м.

Площадь поверхности теплопередачи греющей камеры выпарного аппарата

$$F = \frac{Q}{K \cdot \Delta t_{non}},\tag{8}$$

где F – площадь поверхности теплопередачи выпарного аппарата, M^2 ;

Q – тепловая нагрузка выпарного аппарата, $B_{\rm T}$;

K – коэффициент теплопередачи, $B_T/M^2 \cdot K$;

 $\Delta t_{non.}$ – полезная разность температур, $K(^{0}C)$.

$$\Delta t_{non.} = t_{cp.n.} - t_{\kappa un.}, \tag{9}$$

где $t_{cp.n.}$ — температура конденсации греющего пара, 0 С; $t_{\kappa un.}$ — температура кипения раствора на среднем уровне кипятильных труб (при давлении $P_{cp.}$), 0 С.

Коэффициент теплопередачи:

$$K = \frac{1}{\frac{1}{\alpha_1} + \sum r_{cm.} + \frac{1}{\alpha_2}},\tag{10}$$

где α_1 - коэффициент теплоотдачи от конденсирующегося пара, $\mathrm{Bt/m^2 \cdot K};$ α_2 - коэффициент теплоотдачи к кипящему раствору, $\mathrm{Bt/m^2 \cdot K};$

 $\sum r_{cm.}$ -суммарное термическое сопротивление всех слоев из которых состоит стенка, включая слои загрязнений, м² · K/Bт.

$$\sum r_{cm.} = r_{3aep.1} + \frac{\delta}{\lambda_{cm.}} + r_{3aep.2} , \qquad (11)$$

где $r_{3aep.1}$, $r_{3aep.2}$ - термические сопротивления слоев загрязнений стенки, $\mathbf{M}^2 \cdot \mathbf{K}/\mathbf{B}\mathbf{T}$;

 δ - толщина стенки, м;

λ- коэффициент теплопроводности материала стенки, Вт/м·К.

Критериальные уравнения для расчета коэффициентов теплоотдачи

Теплоотдача при пленочной конденсации водяного пара на вертикальных трубах

$$\alpha = 2.04 \cdot \frac{A_t}{\sqrt[4]{H \cdot (t_{zp.n.} - t_{cm_1.})}},$$
(12)

где α - коэффициент теплоотдачи от конденсирующегося пара, $B_T/M^2 \cdot K$;

 A_t –коэффициент, численное значение приведено в таблице 1;

H – высота труб, м;

 $t_{cp.n.}$ – температура конденсации греющего пара, ${}^{0}\mathrm{C};$

 t_{cml} — температура поверхности стенки, соприкасающейся с пленкой конденсата, ${}^{0}\mathrm{C}$.

Таблица 1

т и отпици т						
Температура	100	110	120	140	160	180
конденсации						
водяного пара,°С						
A_{t}	6960	7100	7240	7420	7490	7520

Теплоотдача при кипении раствора

$$\alpha = b \cdot \sqrt[3]{\frac{\lambda^2 \cdot q^2 \cdot \rho}{\mu \cdot \sigma \cdot T_{\kappa un.}}} = b^3 \cdot \frac{\lambda^2 \cdot (t_{cm_2.} - t_{\kappa un.})^2 \cdot \rho}{\mu \cdot \sigma \cdot T_{\kappa un.}}$$
(13)

где α - коэффициент теплоотдачи от внутренней поверхности вертикальных труб к кипящему раствору , $B T/M^2 \cdot K$;

b – численный коэффициент, см (14);

 λ –коэффициент теплопроводности раствора при температуре кипения $t_{\text{кип.}}$;

q — удельный тепловой поток, BT/M^2 ;

 ρ – плотность раствора при температуре кипения $t_{\text{кип.}}$, кг/м³;

 μ - динамический коэффициент вязкости раствора при температуре кипения $t_{\text{кип.}}$, $\Pi a \cdot c$;

 σ - коэффициент поверхностного натяжения раствора при температуре кипения $t_{\text{кип},}$ H/M

 $t_{\text{кип.}}$ - температура кипения раствора на среднем уровне кипятильных труб (при давлении $P_{\text{cp.}}$), ${}^{0}C$;

 t_{cm2} -температура поверхности стенки, соприкасающейся с кипящим раствором, 0 С; $T_{\kappa un.} = t_{\kappa un.} + 273$, K;

$$b = 0.075 + 0.75 \cdot \left(\frac{\rho_n}{\rho - \rho_n}\right)^{2/3},\tag{14}$$

где ρ_n – плотность насыщенного водяного пара при $t_{\text{кип.}}$, кг/м³ .

2.3. 2 Расчет барометрического конденсатора смешения

Расход охлаждающей воды

$$G_{e} = \frac{W \cdot (i_{em.n.} - c_{e}t_{e_{\kappa}})}{c_{e} \cdot (t_{e_{\kappa}} - t_{e_{\mu}})}, \tag{15}$$

где G_6 - расход охлаждающей воды, подаваемой в конденсатор, кг/с;

 $i_{\textit{вт.n.}}$ - энтальпия вторичного пара в барометрическом конденсаторе (при давлении P_0), Дж/кг;

 $c_{\it e}$ - удельная теплоемкость воды, Дж/кг·К;

 t_{θ_u} и t_{θ_u} - начальная и конечная температура воды в барометрическом конденсаторе

Диаметр барометрического конденсатора

$$d = \sqrt{\frac{4W}{\rho_{em.n.} \cdot \pi \cdot v_{em.n.}}},$$
(16)

где d – диаметр конденсатора, м;

W – расход вторичного пара, кг/с;

 $\rho_{em.n.}$ – плотность вторичного пара при давлении P_0 , кг/м³

 $v_{em.n.}$ – скорость пара, м/с.

Скорость воды в барометрической трубе

$$v_{\scriptscriptstyle g} = \frac{4(G_{\scriptscriptstyle g} + W)}{\rho_{\scriptscriptstyle g} \pi d_{\scriptscriptstyle \tilde{o}.m.}^{2}}, \tag{17}$$

где v_6 – скорость воды в барометрической трубе, м/с;

 ρ_{e} – плотность воды, кг/м 3 ;

 $d_{\delta.m.}$ – диаметр барометрической трубы, м.

Высота барометрической трубы

$$H_{\delta.m.} = \frac{B}{\rho_{s}g} + (1 + \Sigma \xi + \frac{\lambda \cdot H_{\delta.m.}}{d_{\delta.m.}}) \cdot \frac{v_{s}^{2}}{2g} + 0.5,$$
(18)

где $H_{\delta.m.}$ – высота барометрической трубы, м;

B –вакуум в барометрическом конденсаторе, Π а;

 $\Sigma \zeta$ – сумма коэффициентов местных сопротивлений на входе в трубу и на выходе и из нее;

 λ – коэффициент трения.

Режим течения воды в барометрической трубе

$$Re = \frac{v_{s} \cdot d_{\delta,m} \rho_{s}}{\mu_{s}}, \tag{19}$$

где Re — критерий Рейнольдса; μ_{s} — вязкость воды, Па·с.

2.3.3 Расчет вакуум-насоса

Количество воздуха, откачиваемого вакуум- насосом из барометрического конденсатора

$$G_{6030} = 2.5 \cdot 10^{-5} (W + G_6) + 0.01W,$$
 (20)

где $G_{603\partial}$ – производительность вакуум-насоса, кг/с.

Объемная производительность вакуум-насоса

$$V_{603\partial.} = \frac{R \cdot (273 + t_{603\partial.}) \cdot G_{603\partial.}}{M_{603\partial.} \cdot P_{603\partial.}},$$
(21)

где V_{6030} . – объемная производительность вакуум-насоса, м³/с

R – универсальная газовая постоянная, Дж/кмоль·К;

 t_{6030} –температура воздуха, ⁰С;

 M_{6030} — молярная масса воздуха, кг/кмоль;

 P_{6030} - парциальное давление воздуха в барометрическом конденсаторе, Па.

$$t_{6030.} = t_{6..} + 4 + 0.1(t_{6..} - t_{6..})$$
 (22)

$$P_{6030.} = P_0 - P_n \,, \tag{23}$$

где P_0 - давление в барометрическом конденсаторе, Па; P_n - давление сухого насыщенного пара при $\mathbf{t}_{\text{возд.}}$

2.3.4 Ориентировочный расчет теплообменных аппаратов

Определение площади поверхности теплопередачи теплообменных аппаратов осуществляется на основании расчетов теплового баланса, средней разности температур теплоносителей для данного теплообменника и выбранным коэффициентам теплопередачи, рекомендованным по практическим данным для различных видов теплообмена.

Площадь поверхности теплопередачи теплообменника

$$F = \frac{Q}{K \cdot \Delta t_{cn}} \,, \tag{24}$$

где F-площадь поверхности теплопередачи, M^2 ;

Q –тепловая нагрузка аппарата, Вт;

K-коэффициент теплопередачи, $BT/M^2 \cdot K$;

 Δt_{cp} - средняя разность температур между теплоносителями, К(0 С).

Тепловая нагрузка аппарата.

Тепловая нагрузка аппарата определяется по уравнению теплового баланса.

Вид расчетного соотношения зависит от того, изменяется агрегатное состояние теплоносителя в процессе теплообмена или нет.

Если агрегатное состояние теплоносителя в процессе теплообмена не изменяется, то для процесса охлаждения теплоносителя :

$$Q = G \cdot c(t_{\text{\tiny HAY.}} - t_{\text{\tiny KOH.}}), \tag{25}$$

где Q- тепловая нагрузка аппарата, Вт;

G – массовый расход теплоносителя, кг/с;

с- удельная теплоемкость теплоносителя, Дж/кг-К;

 $t_{\text{нач.}},\ t_{\text{кон.}}$ – начальная и конечная температуры теплоносителя.

Для процесса нагревания теплоносителя:

$$Q = G \cdot c(t_{KOH.} - t_{HAY.}) \tag{26}$$

При изменении агрегатного состояния теплоносителя (конденсация насыщенного пара, кипение жидкости):

$$Q = G \cdot r , \qquad \qquad 27)$$

где r – удельная теплота конденсации (парообразования), Дж/кг.

Коэффициент теплопередачи

Таблица 2 - Ориентировочные значения коэффициентов теплопередачи K, $BT/(M^2 \cdot K)$

Вид теплообмена	Вынужденное
	движение
От жидкости к жидкости (углеводороды)	120 - 300
От жидкости к жидкости (вода)	800 - 1700
От конденсирующегося пара к воде	800 - 3500
(конденсаторы, подогреватели)	
От конденсирующегося пара к	120 - 500
органическим жидкостям (подогреватели)	

От конденсирующегося пара органических	300 – 800
веществ к воде (конденсаторы)	

Средняя разность температур теплоносителей

$$\Delta t_{cp} = \frac{\Delta t_I - \Delta t_{II}}{ln(\frac{\Delta t_I}{\Delta t_{II}})} \quad , \tag{28}$$

где Δt_I и Δt_{II} - разности температур теплоносителей на концах теплообменника.

Определение средних температуры теплоносителей

Для теплоносителя, температура которого в теплообменнике изменяется на меньшее число градусов, средняя температура $t_{cp._1}$ определяется как средняя арифметическая между начальной $t_{hay.}$ и конечной $t_{кoh.}$ температурами:

$$t_{cp._1} = \frac{t_{\mu a v.} + t_{\kappa o h.}}{2}. (29)$$

Для другого теплоносителя среднюю температуру находят по формуле:

$$t_{cp_{\cdot 2}} = t_{cp_{\cdot 1}} \pm \Delta t_{cp_{\cdot}}$$
30)

Это уравнение справедливо и тогда, когда температура первого теплоносителя постоянна вдоль поверхности теплообмена.

3 ПРИМЕР РАСЧЕТА

Спроектировать однокорпусную выпарную установку непрерывного действия для выпаривания водного раствора Na_2CO_3 . Производительность по исходному раствору 4 т/ч, концентрация исходного раствора — $0.5\,\%$ (масс.), концентрированного раствора — $2.5\,\%$ (масс.). Избыточное давление греющего пара $0.03\,$ МПа. Исходный раствор с температурой $20\,$ °C. перед подачей в выпарной аппарат подогревается греющим паром в подогревателе. Концентрированный раствор после выпарного аппарата охлаждается в холодильнике до температуры $30\,$ °C. Начальная температура охлаждающей воды $10\,$ °C.

Перечень инженерных расчетов

Расчет и выбор по каталогу выпарного аппарата, холодильника концентрированного раствора, подогревателя исходного раствора, барометрического конденсатора с барометрической трубой, вакуум-насоса.

Дополнительные указания

- 1. Выполнить подробный расчет греющей камеры выпарного аппарата. Тип аппарата: выпарной аппарат с естественной циркуляцией раствора, с вынесенной греющей камерой и кипением в трубах.
- 2. Выполнить ориентировочный расчет теплообменных аппаратов (подогревателя исходного раствора и холодильника концентрированного раствора). Тип аппаратов: кожухотрубчатые теплообменники или теплообменники « труба в трубе».

3.1 Технологическая схема установки

Технологическая схема однокорпусной вакуум-выпарной установки показана на рисунке 2.

Исходный разбавленный раствор из накопительной емкости E1 центробежным насосом H1 или H2 подается в подогреватель T1 (где нагревается до температуры, близкой к температуре кипения), а затем – в выпарной аппарат BA. В качестве теплоносителя в подогревателе и выпарном аппарате используется первичный греющий пар. Образующийся конденсат через конденсатоотводчики KO_1 и KO_2 возвращается в котельную.

Концентрированный раствор выводится из сепаратора выпарного аппарата через холодильник Т2 в емкость Е2, откуда насосом Н3 подается далее по технологической линии. Охлаждение раствора в холодильнике осуществляется водой.

Так как выпарной аппарат работает под вакуумом, емкость E2 соединена с вакуумной линией для обеспечения вывода раствора из аппарата самотеком. Для создания вакуума используется барометрический конденсатор смешения КБ, в который поступает вторичный пар, образующийся при концентрировании раствора в выпарном аппарате и охлаждающая вода. Смесь конденсата и охлаждающей воды выводится из конденсатора в емкость E3 самотеком, при помощи барометрической трубы с гидрозатвором. Для поддержания в барометрическом конденсаторе заданного давления используется вакуумнасос HB.

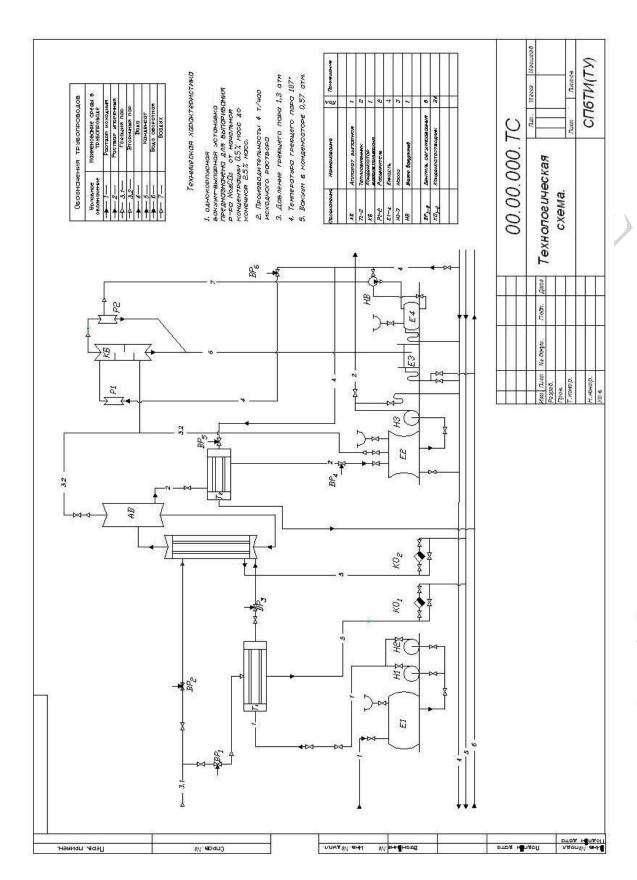


Рисунок 2 – Технологическая схема вакуум-выпарной установки

3.2 Расчет выпарного аппарата

Материальный баланс процесса выпаривания

В соответствии с уравнениями материального баланса (1), (2) найдем неизвестные расходы концентрированного раствора и вторичного пара:

$$G_{_{\rm H}} = \frac{4000}{3600} = 1.11 \, \kappa z / c$$

$$G_{\kappa} = \frac{G_{_{H}} \cdot x_{_{H}}}{x_{_{\kappa}}} = \frac{1.11 \cdot 0.005}{0.025} = 0.22 \ \kappa c / c$$

$$W = G_{H} - G_{K} = 1.11 - 0.22 = 0.89 \ \kappa e / c$$

Температурный режим работы выпарной установки

Найдем абсолютное давление греющего пара:

$$P_{cp.n.} = P_{amm.} + P_{uso.} = 1 \cdot 10^5 + 0.03 \cdot 10^6 = 1.3 \cdot 10^5 \Pi a$$

где $P_{cp.n.}$ - абсолютное давление греющего пара, Па;

 P_{amm} - атмосферное давление, Па;

 $P_{u = \delta}$ - избыточное давление греющего пара, Па.

Для определения температуры конденсации греющего пара $t_{\it cp.n.}$ по его абсолютному давлению используем таблицу Б.1: $t_{\it cp.n}=107\,^{0}{\rm C}$.

При известной температуре $t_{cp,n}$ температуру кипения раствора на среднем уровне кипятильных труб $t_{\kappa un}$ можно найти из соотношения (9).

$$\Delta t_{non.} = t_{sp.n.} - t_{\kappa un.}$$

Предварительно, необходимо задать полезную разность температур, исходя из того, что для аппаратов с естественной циркуляцией раствора рекомендуется: $\Delta t_{non.}$ = 15-30 К. При дальнейшем увеличении полезной разности температур интенсивность процесса теплопередачи может резко снизиться, из-за возникновения кризиса кипения раствора в кипятильных трубах [1,2]. Принимаем $\Delta t_{non.}$ = 25 К.

$$t_{\kappa un.} = 107 - 25 = 82^{-0}C$$

Давление в среднем слое кипящего в кипятильных трубах раствора $P_{cp.}$, соответствующее $t_{\kappa un.}$, выразим из формулы (A.9) :

$$t_{\text{kun.}} = \frac{1669.6}{10.0888 - lg(P) + lg(a \cdot x^2 + b \cdot x + 1)} - 228.4$$

Тогда:

$$P_{cp.} = 10 \qquad ((10.0888 + lg(a \cdot x^2 + b \cdot x + 1) - \frac{1669.6}{t_{\kappa un.} + 228.4}),$$

где a и b— численные коэффициенты, зависящие от растворенного вещества (таблица A.5);

x- конечная концентрация раствора. Для данного раствора a= -0.171, b= -0.445:

$$((10.0888 + lg(-0.171 \cdot 0.025^{2} - 0.445 \cdot 0.025 + 1) - \frac{1669.6}{82 + 228.4})$$

$$= 50727 \text{ } \Pi a$$

Тогда, давление в сепараторе P_L в соответствии с (6):

$$P_1 = P_{cp.} - 0.5\rho \cdot g \cdot H_{vp}$$

Для интенсификации процесса теплоотдачи от стенки к кипящему раствору рекомендуется принять H_{yp} равной H_{onm} . Для нахождения H_{onm} . (5) рассчитаем плотность воды ρ_o и плотность раствора конечной концентрации ρ при температуре $t_{\kappa un}$. В соответствии с (A.2) и (A.1):

$$\rho_o = 1000 - 0.062 \cdot t - 0.00355 \cdot t^2 = 1000 - 0.062 \cdot 82 - 0.00355 \cdot 82^2 = 971 \, \text{kg/m}^3$$

$$lg \rho = lg \rho_o + (a_o + a_1 \cdot t + a_2 \cdot t^2) \cdot x =$$

$$= lg 971 + (0.422132 + 4.2462 \cdot 10^{-4} \cdot 82 - 3.8714 \cdot 10^{-6} \cdot 82^2) \cdot 0.025 = 2.998$$

где a_0 =0.422132, a_1 =4.2462·10 ⁻⁴ , a_2 = -3.8714·10⁻⁶ – численные коэффициенты, зависящие от растворенного вещества (Таблица А.1).

Тогда: $\rho = 995 \, \kappa z / M^3$.

При расчете H_{onm} рекомендуется выбрать максимальную для данного типа аппарата рабочую высоту труб. В соответствии с таблицей В.1 : H_{mp} = 5 м.

$$H_{onm.} = (0.26 + 0.0014(\rho - \rho_{_{6}})) \cdot H_{mp.} = (0.26 + 0.0014(995 - 971)) \cdot 5 = 1.47 \text{ m}$$

$$P_1 = P_{cp.} - 0.5 \rho \cdot g \cdot H_{yp.} = 50727 - 0.5 \cdot 995 \cdot 9.8 \cdot 1.47 = 43547 \ \Pi a$$

По соотношению (A.9) при давлении P_1 и конечной концентрации раствора вычислим температуру кипения раствора в сепараторе:

$$t_{\scriptscriptstyle KOH.} = \frac{1669.6}{10.0888 - lg\,43547 + lg(-0.171 \cdot 0.025^2 - 0.445 \cdot 0.025 + 1)} - 228.4 = 78.2\,^{\circ}C$$

Найдем температуру вторичного пара в сепараторе выпарного аппарата при давлении P_L В соответствии с таблицей Б.1: t_1 =77.5 0 C.

Температура вторичного пара в барометрическом конденсаторе t_0 отличается от температуры вторичного пара в сепараторе выпарного аппарата t_1 на величину гидравлической депрессии $\Delta t_{c.c.}$, обусловленной гидравлическим сопротивлением в паропроводе на участке сепаратор — барометрический конденсатор. Величину $\Delta t_{c.c.}$ принимают, в соответствии с практическими данными, равной 0.5-1 К. Следовательно:

$$t_0$$
=77.5–1=76.5 ${}^{0}C$

Определим давление вторичного пара в барометрическом конденсаторе при температуре t_0 . В соответствии с таблицей Б.2: P_0 =41940 Па.

Для снижения тепловой нагрузки и обеспечения устойчивой работы выпарного аппарата в непрерывном режиме разбавленный раствор должен подаваться в аппарат при температуре, близкой к температуре кипения. Выберем $t_{\rm H}$ =77 $^{\rm O}$ C. Полученные результаты представлены в таблице 3.

Таблица 3 - Температурный режим работы выпарной установки

Узловые точки технологической схемы	Температура, ⁰ C		Давление, Па	
Барометрический конденсатор	t_0	76.5	P_0	41940
Паровое пространство сепаратора	t_1	77.5	P_1	43547
Выход кипящего раствора в сепаратор	$t_{\text{кон.}}$	78.2	P_1	43547
Трубное пространство греющей камеры	$t_{\kappa u \pi}$	82	P _{cp.}	50727
Межтрубное пространство греющей камеры	$t_{{\scriptscriptstyle \Gamma} p. \Pi.}$	107	$P_{\Gamma p.\Pi.}$	13000
Вход исходного раствора в	t _H	77	-	-
аппарат				

Расчет тепловой нагрузки выпарного аппарата

Для расчета, в соответствии с (3), тепловой нагрузки аппарата Q найдем, предварительно, удельную теплоемкость раствора при температуре $t_{\text{кон.}}$ и концентрации $x_{\text{н.}}$ по соотношениям (A.5) и (A.6):

$$c = c_0 + (B_1 + B_2 \cdot x + B_3 \cdot t + B_4 \cdot t^2) \cdot x$$
,

$$c_0 = 4223.6 + 2.476 \cdot t \cdot lg \frac{t}{100}$$

где c и c_0 – удельные теплоемкости раствора и воды соответственно, Дж/кг·К;

х- концентрация раствора, кг раств.вещества/кг раствора;

t- температура раствора, ⁰С;

 B_1 , B_2 , B_3 , B_4 — численные коэффициенты, зависящие от растворенного вещества, (приведены в таблице A.3).

$$c_0 = 4223.6 + 2.476 \cdot 78.2 \cdot lg \frac{78.2}{100} = 4202.9 \; Дж / кг \cdot K$$

$$c = 4202.9 + (-4187.41 + 4760.1 \cdot 0.005 + 6.66 \cdot 78.2 - 8.25 \cdot 10^{-3} \cdot 78.2^2) \cdot 0.005 = 4184.5 \; \text{Jic/ke} \, / \, \text{ke/ke} \, / \, \text{ke/ke}$$

Удельная теплота конденсации вторичного пара $r_{\mathit{sm.n.}}$ при P_1 по таблице Б.1 равна 2315 КДж/кг.

Расход теплоты на компенсацию потерь в окружающую среду при расчете выпарных аппаратов обычно принимают в размере 3-5% от суммы $(Q_{\textit{нагр.}} + Q_{\textit{ucn.}})$. Примем $Q_{\textit{nom.}} = 5\%$. Тогда:

$$Q = G_{H} \cdot c_{H}(t_{KOH.} - t_{H}) + W \cdot r_{em.n.} + Q_{nom.} = (G_{H} \cdot c_{H}(t_{KOH.} - t_{H}) + W \cdot r_{em.n.}) \cdot 1.05 =$$

$$= (1.11 \cdot 4184.5 \cdot (78.2 - 77) + 0.889 \cdot 2315 \cdot 10^{3}) \cdot 1.05 = 2166707 \ Bm$$

Расчет расхода греющего пара.

В соответствии с (4) расход греющего пара:

$$G_{zp.n.} = \frac{Q}{r_{zp.n.} \cdot x} = \frac{2166707}{2241.5 \cdot 10^3} = 0.967 \ \kappa z / c$$

где 2241.5 КДж/кг- удельная теплота конденсации греющего пара в соответствии с таблицей Б.1 при давлении $P_{\it cp.n.}$ Степень сухости греющего пара принята равной 1.

Удельный расход греющего пара по соотношению (5):

$$d = \frac{G_{zp.n}}{W} = \frac{0.967}{0.889} = 1.089 \ \text{kg/kg}$$

Расчет площади поверхности теплообмена греющей камеры выпарного annapama

В соответствии с (8) площадь поверхности теплообмена:

$$F = \frac{Q}{K \cdot \Delta t_{non.}}$$

Так как, тепловая нагрузка выпарного аппарата Q и средняя разность температур процесса теплопередачи между греющим паром и кипящим раствором Δt_{non} уже известны, для определения F, необходимо провести расчет коэффициента теплопередачи K по формуле (10).

$$K = \frac{1}{\frac{1}{\alpha_1} + \sum r_{cm.} + \frac{1}{\alpha_2}}$$

Определим суммарное термическое сопротивление стенки, с учетом ее загрязнений с обеих сторон в соответствии с (11):

$$\sum r_{cm.} = r_{sazp.1} + \frac{\delta}{\lambda_{cm}} + r_{sazp.2} = \frac{1}{5800} + \frac{0.002}{46.5} + \frac{1}{2500} = 6.15 \cdot 10^{-4} \,\text{m}^2 \cdot \text{K} / Bm \,,$$

 $\sum r_{cm.} = r_{saep.1} + \frac{\delta}{\lambda_{cm.}} + r_{saep.2} = \frac{1}{5800} + \frac{0.002}{46.5} + \frac{1}{2500} = 6.15 \cdot 10^{-4} \, \text{м}^2 \cdot \text{K} \, / \, \text{Bm} \, ,$ $r_{saep.1} = \frac{1}{5800} \, \text{м}^2 \cdot \text{K} \, / \, \text{Bm} - \text{ термическое сопротивление загрязнений стенки со}$ стороны пара в соответствии с таблицей Б.5;

 $r_{3a2p.2} = \frac{1}{2500} M^2 \cdot K / Bm$ - термическое сопротивление загрязнений стенки со стороны раствора в соответствии с таблицей Б.5 ;

 $\delta = 0.002$ м— толщина стенки трубы, таблица В.1;

 $\lambda_{cm.}$ =46.5 Вт/м·К - коэффициент теплопроводности стали, таблица Б.4.

Расчет коэффициентов теплоотдачи теплоносителей проводится по критериальным уравнениям [1]. Для расчета коэффициента теплоотдачи от конденсирующегося пара используем соотношение (12):

$$\alpha_1 = 2.04 \cdot \frac{A_t}{\sqrt[4]{H \cdot (t_{cp.n.} - t_{cm_1.})}}$$

Для водяного пара при температуре конденсации $t_{cp.n.}$ =107 0 C в соответствии с таблицей 1 A_{t} =7058. С учетом выбранной ранее высоты труб, $H_{mp.}$ = 5 м, получим:

$$\alpha_1 = 2.04 \cdot \frac{7058}{\sqrt[4]{5 \cdot (107 - t_{cm,1})}} = \frac{9629}{\sqrt[4]{107 - t_{cm,1}}}$$
(31)

Коэффициент теплоотдачи к кипящему раствору будем рассчитывать по формуле (13):

$$\alpha_2 = b^3 \cdot \frac{\lambda^2 \cdot (t_{cm._2} - t_{\kappa un.})^2 \cdot \rho}{\mu \cdot \sigma \cdot T_{\kappa un.}}$$

Определим, необходимые для расчета коэффициента теплоотдачи, теплофизические свойства раствора при температуре кипения $t_{\kappa un}$. и конечной концентрации x_{κ} : коэффициент теплопроводности, плотность, динамический коэффициент вязкости, коэффициент поверхностного натяжения. Используем для этого расчетные соотношения, приведенные в приложении A[8]:

Коэффициент теплопроводности раствора

В соответствии с (А.8) и (А.7):

$$\lambda_0 = 0.5545 + 0.00246 \cdot t - 0.00001184 \cdot t^2$$

$$\lambda = \lambda_0(t) \cdot (1 - \beta \cdot x)$$

где λ_0 и λ –коэффициенты теплопроводности воды и раствора, соответственно, Вт/м·К;

 β - численный коэффициент, зависящий от растворенного вещества, (таблица A.4); x – массовая концентрация раствора.

$$\lambda_0 = 0.5545 + 0.00246 \cdot 82 - 0.00001184 \cdot 82^2 = 0.475 \ Bm \ / \ m \cdot K$$

$$\lambda = 0.475 \cdot \left(1 - 0.14384 \cdot 0.025\right) = 0.473 \ \mathrm{Bt/m} \cdot \mathrm{K}$$

Динамический коэффициент вязкости раствора:

По формулам (А.4) и (А.3):

$$\mu_0 = 0.59849 \cdot (43.252 + t)^{-1.5423}$$

$$lg \ \mu = lg \ \mu_0 + \left(d_0 + d_1 \cdot t + d_2 \cdot t^2\right) \cdot x \,,$$

где μ_0 и μ - коэффициенты динамической вязкости воды и раствора соответственно, Па·с;

 $d_0,\ d_1,\ d_2$ - численные коэффициенты, зависящие от растворенного вещества, (таблица A.2).

$$\mu_0 = 0.59849 \cdot (43.252 + 82)^{-1.5423} = 3.48 \cdot 10^{-4} \ \Pi a \cdot c ,$$

$$lg \ \mu = lg(3.48 \cdot 10^{-4}) + \left(3.1088 - 1.3483 \cdot 10^{-2} \cdot 82 - 2.91419 \cdot 10^{-6} \cdot 82^2\right) \cdot 0.025 = -3.383958$$

Тогда, $\mu = 4.13 \cdot 10^{-4} \, \text{Па·с}.$

Значение плотности раствора конечной концентрации при температуре кипения $t_{\kappa un}$ было определено ранее: $\rho = 995~\kappa z/m^3$.

В связи с отсутствием надежных расчетных соотношений для определения коэффициента поверхностного натяжения раствора, а также с учетом его невысокой конечной концентрации, в данном проекте допустимо использовать коэффициент поверхностного натяжения воды. При $t_{\kappa un}$ в соответствии с таблицей Б.3, $\sigma = 0.062$ н/м.

Для расчета численного значения коэффициента b по соотношению (14), по таблице Б.2 определим плотность насыщенного водяного пара при $t_{\kappa un}$: ρ_n =0.33 кг/м³.

Тогда:

$$b = 0.075 + 0.75 \cdot \left(\frac{\rho_n}{\rho - \rho_n}\right)^{2/3} = 0.075 + 0.75 \cdot \left(\frac{0.33}{995 - 0.33}\right)^{2/3} = 0.0786$$

Подставив, полученные численные значения, получим:

$$\alpha_{2} = b^{3} \cdot \frac{\lambda^{2} \cdot (t_{cm.2} - t_{\kappa um.})^{2} \cdot \rho}{\mu \cdot \sigma \cdot T_{\kappa um.}} = 0.0786^{3} \cdot \frac{0.473^{2} \cdot (t_{cm.2} - 82)^{2} \cdot 995}{4.13 \cdot 10^{-4} \cdot 0.062 \cdot (273 + 82)} = 11.89 \cdot (t_{cm.2} - 82)^{2}$$
(32)

Так как, в критериальные уравнения (31) и (32) входят неизвестные температуры поверхностей стенок, соприкасающиеся с теплоносителями, то расчет коэффициентов теплоотдачи будем проводить методом последовательных приближений [7], используя систему уравнений (33)-(37):

$$\alpha_1 = \frac{9629}{\sqrt{107 - t_{cm.1}}},\tag{33}$$

$$q_1 = \alpha_1 \cdot (107 - t_{cm_1}), \tag{34}$$

$$q_{cm.} = \frac{t_{cm_1} - t_{cm_2}}{6.15 \cdot 10^{-4}},\tag{35}$$

$$\alpha_2 = 11.89 \cdot (t_{cm_2} - 82)^2, \tag{36}$$

$$q_2 = \alpha_2 \cdot (t_{cm._2} - 82). \tag{37}$$

Для установившегося процесса передачи теплоты справедливо уравнение:

$$q_1 = q_2 = q_{cm.} = q$$

С учетом требуемой точности расчетов, проводимых в данном проекте, расхождение между тепловыми потоками должно быть не более 0.05. Для проверки сходимости будем использовать следующее соотношение:

$$E = \frac{|q_1 - q_2|}{\min(q_1, q_2)} \tag{38}$$

При выборе температуры $t_{cm.1}$ для первого приближения следует учитывать, что:

$$t_{cp.n} > t_{cm.1} > t_{cm.2} > t_{\kappa un.}$$

Для первого приближения выберем $t_{cm.1}^{\prime}$ =105 ^{0}C .

Рассчитаем коэффициент теплоотдачи от конденсирующегося пара по (33):

$$\alpha_1' == \frac{9629}{\sqrt[4]{107 - 105}} = 8097 \ Bm / M^2 \cdot K$$

В соответствии с (34) удельный тепловой поток от пара к стенке:

$$q_1' = 8097 \cdot (107 - 105) = 16194 \ Bm / M^2$$

Рассчитаем температуру стенки со стороны кипящего раствора по(35):

$$t'_{cm.} = t'_{cm.} - q'_1 \cdot \Sigma r_{cm.} = 105 - 16194 \cdot 0.000615 = 95^{\circ}C$$

Определим коэффициент теплоотдачи к кипящему раствору по(36):

$$\alpha_2' = 11.89 \cdot (95 - 82)^2 = 2009 \ Bm / M^2 \cdot K$$

Найдем удельный тепловой поток от стенки к кипящему раствору по (37):

$$q_2' = 2009 \cdot (95 - 82) = 26117 \ Bm / M^2 \cdot K$$

Проверим сходимость тепловых потоков по соотношению (38):

$$E' = \frac{|q_1' - q_2'|}{\min(q_1', q_2')} = \frac{|16194 - 26117|}{16194} = 0.61$$

Так как $q_1 < q_2$, то целесообразно увеличить движущую силу процесса теплоотдачи от конденсирующегося пара, поэтому для второго приближения выберем $t''_{cm_1} < t'_{cm_1}$.

Примем $t_{cm_1}'' = 104 \, {}^{0}C$ и проведем аналогичные вычисления:

$$\alpha_1'' = \frac{9629}{\sqrt[4]{107 - 104}} = 7316 \; Bm / M^2 \cdot K \; ,$$

$$q_1'' = 7316 \cdot (107 - 104) = 21948 \ Bm / M^2$$
,

$$t''_{cm.2} = 104 - 21948 \cdot 0.000615 = 90.5 \, {}^{0}C$$
,
 $\alpha''_{2} = 11.89 \cdot (90.5 - 82)^{2} = 859 \,\mathrm{BT/M^{2} \cdot K}$,
 $q''_{2} = 859 \cdot (90.5 - 82) = 7302 \,Bm/M^{2} \cdot K$,

$$E'' = \frac{|21948 - 7302|}{7302} = 2.01$$

Так как, в первом приближении $q_1 < q_2$, а во втором приближении $q_1 > q_2$, то, очевидно, что искомая температура стенки t_{cm_1} , при которой обеспечивается сходимость тепловых потоков с заданной точностью, лежит в интервале между 105 и 104 0 C. Так как

при t_{cm_1}'' =104 0C расхождение между тепловыми потоками существенно больше, чем при t_{cm_1}' =105 0C , примем для третьего приближения t_{cm_1}''' =104.7 0C

$$\alpha_1''' = \frac{9629}{\sqrt[4]{107 - 104.7}} = 7819 \ Bm / M^2 \cdot K,$$

 $q_1''' = 7819 \cdot (107 - 104.7) = 17984 \ Bm / M^2$

$$t_{cm._2}^{""} = 104.7 - 17984 \cdot 0.000615 = 93.6 \, {}^{0}C$$
,

$$\alpha_2^{m} = 11.89 \cdot (93.6 - 82)^2 = 1600 \ Bm/m^2 \cdot K$$

$$q_2''' = 1600 \cdot (93.6 - 82) = 18560 \ Bm / M^2 \cdot K$$
$$E''' = \frac{|17984 - 18560|}{17984} = 0.032$$

Так как, E''' < 0.05, то требуемая точность сходимости тепловых потоков достигнута.

Необходимо отметить, что ввиду значительной зависимости коэффициентов теплоотдачи от температуры стенок необходима достаточно высокая точность расчета значений этих температур, поэтому при реализации метода последовательных приближений целесообразно использовать компьютер с соответствующим программным обеспечением (Mathcad, Excel).

По результатам последнего приближения рассчитаем коэффициент теплопередачи (10):

$$K = \frac{1}{\frac{1}{\alpha_1} + \sum r_{cm.} + \frac{1}{\alpha_2}} = \frac{1}{\frac{1}{7819} + 6.15 \cdot 10^{-4} + \frac{1}{1600}} = 731 \, Bm / \, m^2 \cdot K$$

Требуемая площадь поверхности теплообмена выпарного аппарата (9):

$$F = \frac{Q}{K \cdot \Delta t_{noa.}} = \frac{2166707}{731 \cdot 25} = 118.6 \text{ m}^2$$

С учетом, рекомендуемого на основе практических данных 10-20 % запаса площади, выберем по таблице В.1 стандартный выпарной аппарат с естественной циркуляцией и вынесенной греющей камерой со следующими параметрами: площадь поверхности теплообмена 140 м², высота кипятильных труб 5 м.

3.3 Расчет барометрического конденсатора смешения

Расход охлаждающей воды

В соответствии с (15):

$$G_{e} = \frac{W \cdot (i_{em.n.} - c_{e}t_{e_{\kappa}})}{c_{e} \cdot (t_{e_{\kappa}} - t_{e_{n}})} = \frac{0.889 \cdot (2635 \cdot 10^{3} - 4190 \cdot 70)}{4190 \cdot (70 - 10)} = 8.28 \, \kappa \varepsilon / c,$$

 $i_{\it em.n} = 2635 \; {\rm KДж/кг} - {\rm энтальпия} \; {\rm вторичного} \; {\rm пара} \; {\rm в} \; {\rm барометрическом} \; {\rm конденсаторе}$ где (при давлении P_0), (таблица Б.1);

(при давлении
$$P_0$$
), (таблица Б.1); $c_s = 4190 \text{ Дж/кг·K} - \text{ удельная теплоемкость воды;}$ $t_{\mathcal{B}_H} = 10^{-0} C$ и $t_{\mathcal{B}_H} = 70^{-0} C$ - начальная и конечная температура воды в етрическом конленсаторе. В соответствии с практическими рекоменлациями в

барометрическом конденсаторе. В соответствии с практическими рекомендациями в конденсаторах смешения конечная температура воды принимается на несколько градусов ниже температуры конденсации пара при давлении Ро

Диаметр барометрического конденсатора

По соотношению (16) определим диаметр конденсатора:

$$d = \sqrt{\frac{4W}{\rho_{em,n} \cdot \pi \cdot \nu_{em,n}}} = \sqrt{\frac{4 \cdot 0.889}{0.262 \cdot 3.14 \cdot 20}} = 0.465 \text{ M},$$

 $ho_{\it 6m.n.}$ =0.262 кг/м³– плотность вторичного пара при давлении P_0 , (таблица Б.1); $v_{\it 6m.n.}$ = 20 м/с – скорость пара. В соответствии с практическими рекомендациями где скорость пара принимают равной 15-25 м/с.

В соответствии с данными, приведенными в таблице В.2, выберем стандартный конденсатор с диаметром, равным расчетному или ближайшему большему значению. Тогда, стандартный диаметр: d=0.5 м. Диаметр барометрической трубы $d_{\it 6.m.}$ для этого конденсатора равен 0.125 м (таблица В.2)

Скорость воды в барометрической трубе

Используем соотношение (17) для определения скорости воды в барометрической трубе:

$$v_{s} = \frac{4(G_{s} + W)}{\rho_{s}\pi d_{\delta.m.}^{2}} = \frac{4 \cdot (8.279 + 0.889)}{992 \cdot 3.14 \cdot 0.125^{2}} = 0.753 \text{ m/c},$$

где $\rho_o = 992 \text{ кг/м}^3$ – плотность воды по формуле (A.2), при температуре:

$$t = (t_{6x} + t_{6x})/2 = (10 + 70)/2 = 40^{\circ}C$$
.

Высота барометрической трубы

Выразим высоту барометрической трубы из соотношения (18)

$$H_{\delta,m.} = \frac{\frac{B}{\rho_{e}g} + 0.5 + (1 + \Sigma \xi) \cdot \frac{v_{e}^{2}}{2g}}{\left(1 - \frac{\lambda}{d_{\delta,m.}} \cdot \frac{v_{e}^{2}}{2g}\right)},$$
(39)

где
$$B = P_{amm.} - P_0 = 9.8 \cdot 10^4 - 4.19 \cdot 10^4 = 5.61 \cdot 10^4 \ \varPia \ ;$$

$$\Sigma \xi = 0.5 + 1.0 = 1.5 \ ;$$

 λ – коэффициент трения.

Коэффициент трения λ зависит от режима течения жидкости. Определим режим течения воды в барометрической трубе по (19):

$$Re = \frac{v_{s} \cdot d_{\delta.m.} \rho_{s}}{\mu_{s}} = \frac{0.753 \cdot 0.125 \cdot 992}{0.656 \cdot 10^{-3}} = 142335,$$

где $\mu=0.656\cdot 10^{-3}\cdot \Pi a\cdot c$ – вязкость воды по формуле (A.4) при t=40 0 C , $\Pi a\cdot c$. Для гладких труб при Re>100000 для определения коэффициента трения можно использовать соотношение [5]:

$$\lambda = (1.82 \lg Re - 1.64)^{-2}$$

Тогда, коэффициент трения:

$$\lambda = (1.82 \lg 142335 - 1.64)^{-2} = 0.0167$$

Подставив в (39) полученные значения, найдем высоту барометрической трубы:

$$H_{\delta.m.} = \frac{\frac{5.61 \cdot 10^4}{992 \cdot 9.8} + 0.5 + (1 + 1.5) \cdot \frac{0.753^2}{2 \cdot 9.8}}{\left(1 - \frac{0.0167}{0.125} \cdot \frac{0.753^2}{2 \cdot 9.8}\right)} = 6.37 \text{ M}$$

3.4 Расчет вакуум-насоса

Производительность вакуум-насоса определяется количеством воздуха, откачиваемого из барометрического конденсатора. В соответствии с (20):

$$G_{6030} = 2.5 \cdot 10^{-5} (W + G_6) + 0.01 W = 2.5 \cdot 10^{-5} (0.889 + 8.279) + 0.01 \cdot 0.889 = 9.12 \cdot 10^{-3} \, \text{kg/c}$$

Для расчета объемной производительности вакуум-насоса по соотношению (21), определим температуру воздуха и его парциальное давление при этой температуре:

$$t_{6030.} = t_{g_n} + 4 + 0.1(t_{g_k} - t_{g_n}) = 10 + 4 + 0.1(70 - 10) = 20^{\circ}C$$

Давление сухого насыщенного пара при t_{6030} =20 0 С, в соответствии с таблицей Б. 2 равно: P_{n} =0.0238 кгс/см². Тогда парциальное давление воздуха:

$$P_{6030.} = P_0 - P_n = 4.19 \cdot 10^4 - 0.0238 \cdot 9.8 \cdot 10^4 = 3.96 \cdot 10^4 \ \Pi a$$

Подставив полученные значения в (21), получим:

$$V_{{}_{603\partial.}} = \frac{R \cdot (273 + t_{{}_{603\partial.}}) \cdot G_{{}_{603\partial.}}}{M_{{}_{603\partial.}} \cdot P_{{}_{603\partial.}}} = \frac{8310 \cdot (273 + 20) \cdot 9.12 \cdot 10^{-3}}{29 \cdot 3.96 \cdot 10^4} = 0.0193 \; \text{m}^3 \, / \, c = 1.16 \; \text{m}^3 \, / \, \text{muh.}$$

Зная объемную производительность вакуум-насоса $V_{603\partial}$, и остаточное давление P_{θ} , по таблице В.3 подбираем вакуум-насос типа ВВН-1.5

3.5 Ориентировочный расчет теплообменных аппаратов

Ориентировочный расчет подогревателя исходного раствора

В подогревателе раствор нагревается от начальной температуры $t_{ucx.}$ =20 0 С (указана в задании) до температуры t_{H} =77 0 С, (см.п.3.2), при которой он поступает в выпарной аппарат. В качестве греющего агента используется первичный греющий пар с $t_{cp.n.}$ =107 0 С. Так как, пар конденсируется при постоянной температуре, то взаимная схема движения теплоносителей (прямоток, противоток) не влияет на величину средней разности температур.

Вычислим среднюю разность температур в соответствии с (28):

$$\Delta t_{cp} = \frac{\Delta t_I - \Delta t_{II}}{ln(\frac{\Delta t_I}{\Delta t_{II}})} = \frac{(t_{cp.n.} - t_{ucx.}) - (t_{cp.n.} - t_{H.})}{ln\frac{(t_{cp.n.} - t_{ucx.})}{(t_{cp.n.} - t_{H.})}} = \frac{(107 - 20) - (107 - 77)}{ln\frac{(107 - 20)}{(107 - 77)}} = 54 \, {}^{0}C,$$

где $t_{cp.n.}$ — температура конденсации греющего пара, 0 С; $t_{ucx.}$ — температура начальная температура разбавленного раствора, 0 С; $t_{h.}$ — температура разбавленного раствора на входе в выпарной аппарат, 0 С.

Так как, пар конденсируется при постоянной температуре, то средняя температура нагревающегося раствора $t_{cp,p}$ в соответствии с (30) равна:

$$t_{cp,p} = t_{cp,n} - \Delta t_{cp} = 107 - 54 = 53^{\circ} C$$

Для определения тепловой нагрузки аппарата Q, Вт, рассчитаем количество теплоты, необходимой для нагревания разбавленного раствора от начальной температуры до температуры, при которой он подается в выпарной аппарат. По соотношению (26):

$$Q = G_n \cdot c_n (t_n - t_{ucx}) = 1.11 \cdot 4168.2 \cdot (77 - 20) = 263722 Bm$$

где c_{H} =4168.2 Дж/кг·К — удельная теплоемкость разбавленного раствора по формуле (A.5) при $t_{cp,p}$ =53 0 С и x_{H} =0.005 .

Выберем из таблицы 2 ориентировочное значение коэффициента теплопередачи, $K=1000~{\rm BT/m^2\cdot K}$, соответствующее данному виду теплообмена (от конденсирующегося пара к водному раствору).

Подставив полученные значения в (24), найдем площадь поверхности теплообмена подогревателя:

$$F = \frac{Q}{K \cdot \Delta t_{cp.}} = \frac{263722}{1000 \cdot 54} = 4.9 \text{ m}^2$$

С учетом 20% запаса по поверхности теплообмена, по таблице В.4 выбираем стандартный аппарат: одноходовый кожухотрубчатый теплообменник ТН с площадью поверхности теплообмена $F=6~{\rm m}^2$, с трубами \varnothing 25×2 мм, диаметром кожуха D=273 мм, длиной труб l=3 м.

На основе теплового баланса (27) рассчитаем требуемый расход греющего пара $G_{\rm n}$ для подогревателя:

$$Q = G_n \cdot r_{zp.n.} = G_{H} \cdot c_{H} \left(t_{H.} - t_{ucx.} \right)$$

$$G_n = \frac{Q}{r_{2n,n}} = \frac{263722}{2241.5 \cdot 10^3} = 0.12 \, \kappa c / c$$

Ориентировочный расчет холодильника концентрированного раствора

Концентрированный раствор выводится из выпарного аппарата и поступает в теплообменник при температуре $t_{\kappa o \mu}$ =78.2 0 C. В соответствии с заданием он охлаждается до температуры $t_{p.\kappa}$ =30 0 C. Начальная температура охлаждающей воды, $t_{\theta H}$, задана, конечная температура, $t_{\theta K}$, обычно принимается на 10–20 0 C больше, чем $t_{\theta H}$. Примем:

$$t_{\rm g.r.} = t_{\rm g.u.} + 15 = 10 + 15 = 25^{\circ} C$$

Выберем противоточную схему движения теплоносителей, так как в этом случае величина средней разности температур $\Delta t_{cp.}$ будет больше, чем в прямоточной схеме. Вычислим среднюю разность температур в соответствии с (28):

$$\Delta t_{cp} = \frac{\Delta t_I - \Delta t_{II}}{ln(\frac{\Delta t_I}{\Delta t_{II}})} = \frac{(t_{\text{кон.}} - t_{\text{вк.}}) - (t_{p.\text{к.}} - t_{\text{вн.}})}{ln\frac{(t_{\text{кон.}} - t_{\text{вк.}})}{(t_{p.\text{к.}} - t_{\text{вн.}})}} = \frac{(78.2 - 25) - (30 - 10)}{ln\frac{(78.2 - 25)}{(30 - 10)}} = 34 \, ^{0}C$$

Так как, температура воды в теплообменнике изменяется на меньшее число градусов, по сравнению с температурой раствора, то среднюю температуру воды $t_{cp.s}$ определим по соотношению (29):

$$t_{cp.6} = \frac{t_{6H.} + t_{6K.}}{2} = \frac{10 + 25}{2} = 17.5^{\circ}C$$

Среднюю температуру охлаждающегося концентрированного раствора найдем по формуле (30):

$$t_{cp.p.} = t_{cp.s.} + \Delta t_{cp.} = 17.5 + 34 = 51.5 \, ^{0}C$$

Для определения тепловой нагрузки аппарата Q, Вт, рассчитаем количество теплоты, выделяющейся при охлаждении концентрированного раствора по формуле (25):

$$Q = G_{\kappa} \cdot c_{\kappa} (t_{\kappa on.} - t_{p.\kappa.}) = 0.22 \cdot 4093.2 \cdot (78.2 - 30) = 43404 \ Bm$$

где G_{κ} =0.22 кг/с - расход концентрированного раствора; c_{κ} = 4093.2- удельная теплоемкость концентрированного раствора по (A.5) при $t_{cp,p.}$ =51.5 0 C и x_{κ} =0.025 кг раств. вещества/кг раствора.

Выберем из таблицы 2 ориентировочное значение коэффициента теплопередачи, $K=800~{\rm Bt/m^2\cdot K}$, соответствующее данному виду теплообмена (от водного раствора к воде).

Подставив полученные значения в (24), найдем площадь поверхности теплообмена холодильника:

$$F = \frac{Q}{K \cdot \Delta t_{co}} = \frac{43404}{800 \cdot 34} = 1.6 \text{ m}^2$$

С учетом 20% запаса по поверхности теплообмена, по таблице В.4 выбираем стандартный аппарат: одноходовый кожухотрубчатый теплообменник ТН с площадью поверхности теплообмена $F=2\,\mathrm{m}^2$, с трубами \varnothing 25×2 мм, диаметром кожуха $D=159\,\mathrm{mm}$, длиной труб $l=2\,\mathrm{m}$.

На основе теплового баланса рассчитаем требуемый расход охлаждающей воды G_{e} для холодильника:

$$Q = G_{\kappa} \cdot c_{\kappa} (t_{\kappa OH.} - t_{\kappa.p.}) = G_{\epsilon} \cdot c_{\epsilon} (t_{\epsilon \kappa} - t_{\epsilon H})$$

$$G_{e} = \frac{Q}{c_{e}(t_{ex} - t_{ex})} = \frac{43404}{4186.8 \cdot (25 - 10)} = 0.69 \, \kappa c / c$$

где c_e =4186.8 Дж/кг·К — удельная теплоемкость воды по формуле (А.6) при $t_{cp.e}$ =17.5 0 C.

3.6 Выводы

- 1 В соответствии с заданием разработана технологическая схема однокорпусной вакуум-выпарной установки.
- 2 В результате проведенных расчетов выбрано следующее стандартное оборудование:
- выпарной аппарат с естественной циркуляцией и вынесенной греющей камерой со следующими параметрами: площадь поверхности теплообмена $140~{\rm M}^2$, высота кипятильных труб 5 м;
- барометрический конденсатор диаметр $0.5\,\mathrm{m}$, барометрическая труба- диаметр $0.125\,\mathrm{m}$, высота $-6.37\,\mathrm{m}$;
- -вакуум-насос типа BBH-1.5 со следующими параметрами: производительность- $1.5~{\rm m}^3$ /мин, мощность на валу- $2.1~{\rm kBT}$;
- -подогреватель исходного раствора: одноходовый кожухотрубчатый теплообменник ТН с площадью поверхности теплообмена $F=6~{\rm m}^2$, с трубами \varnothing 25×2 мм, диаметром кожуха D=273 мм, длиной труб l=3 м;
- -холодильник концентрированного раствора: одноходовый кожухотрубчатый теплообменник ТН с площадью поверхности теплообмена $F=2\,\mathrm{m}^2$, с трубами \varnothing 25×2 мм, диаметром кожуха $D=159\,\mathrm{mm}$, длиной труб $l=2\,\mathrm{mm}$.

4 ЗАДАНИЕ НА ПРОЕКТИРОВАНИЕ

Спроектировать однокорпусную выпарную установку непрерывного действия для выпаривания водного раствора. Производительность по исходному раствору $G_{\rm H.}$, концентрация исходного раствора - $x_{\rm H.}$ концентрированного раствора - $x_{\rm K.}$ Избыточное давление греющего пара $P_{u36.}$ Исходный раствор с температурой t_{ucx} . перед подачей в выпарной аппарат подогревается греющим паром в подогревателе. Концентрированный раствор после выпарного аппарата охлаждается в холодильнике до температуры $t_{p.K.}$ Начальная температура охлаждающей воды $t_{e.H.}$

Перечень инженерных расчетов

Расчет и выбор по каталогу выпарного аппарата, холодильника концентрированного раствора, подогревателя исходного раствора, барометрического конденсатора с барометрической трубой, вакуум-насоса.

Дополнительные указания

- 1. Выполнить подробный расчет греющей камеры выпарного аппарата. Тип аппарата: выпарной аппарат с естественной циркуляцией раствора, с вынесенной греющей камерой и кипением в трубах.
- 2. Выполнить ориентировочный расчет теплообменных аппаратов (подогревателя исходного раствора и холодильника концентрированного раствора). Тип аппаратов: кожухотрубчатые теплообменники или теплообменники « труба в трубе».

Состав графической части

Технологическая схема выпарной установки, чертеж теплообменного аппарата

Исходные данные приведены в таблице 4.

Таблица 4

Таблица	1	I			ı		ı	I _	
Вариант	Растворенное вещество	G _н , т∕ч	$x_{\scriptscriptstyle H},\%$ (macc)	$x_{\kappa}\%$ (macc)	${}^{t_{ucx,}}_{{}^{0}C}$	${}^{t_{e.h,}}_{{}^{0}C}$	${}^{t_{p.\kappa.,}}_{C}$	P _{изб.} МПа	Теплообменник
1	CaCl ₂	5	4	12	15	10	20	0.1	холодильник
2	K ₂ CO ₃	6	2	9	20	15	25	0.2	подогреватель
3	KC1	7	3	12	25	10	30	0.3	холодильник
4	КОН	8	2	10	30	15	35	0.4	подогреватель
5	MgCl ₂	9	4	12	15	10	20	0.1	холодильник
6	NH ₄ Cl	10	2	9	20	15	25	0.2	подогреватель
7	(NH ₄) ₂ SO ₄	11	3	12	25	10	30	0.3	холодильник
8	NaCl	12	2	10	30	15	35	0.4	подогреватель
9	Na ₂ SO ₄	5	2	9	15	10	20	0.1	холодильник
10	Na ₂ CO ₃	6	3	12	20	15	25	0.2	подогреватель
11	NaOH	7	2	10	25	10	30	0.3	холодильник
12	KNO ₃	8	4	12	30	15	35	0.4	подогреватель
13	MgSO ₄	9	2	9	15	10	20	0.1	холодильник
14	NH ₄ NO ₃	10	3	12	20	15	25	0.2	подогреватель
15	CuSO ₄	11	2	10	25	10	30	0.3	холодильник
16	NaNO ₃	12	4	12	30	15	35	0.4	подогреватель
17	CaCl ₂	12	2	9	30	15	35	0.4	подогреватель
18	K ₂ CO ₃	11	4	12	25	10	30	0.3	холодильник
19	KC1	10	2	10	20	15	25	0.2	подогреватель
20	КОН	9	3	12	15	10	20	0.1	холодильник
21	MgCl ₂	8	2	9	30	15	30	0.4	подогреватель
22	NH ₄ Cl	7	4	12	25	10	35	0.3	холодильник
23	(NH ₄) ₂ SO ₄	6	2	10	20	15	35	0.2	подогреватель
24	NaCl	5	3	12	15	10	30	0.1	холодильник
25	Na ₂ SO ₄	12	3	12	30	15	25	0.4	подогреватель
26	Na ₂ CO ₃	11	2	9	25	10	20	0.3	холодильник
27	NaOH	10	4	12	20	15	30	0.2	подогреватель
28	KNO ₃	9	2	10	15	10	35	0.1	холодильник
29	MgSO ₄	8	3	12	30	15	35	0.4	подогреватель
30	NH ₄ NO ₃	7	2	9	25	10	30	0.3	холодильник
31	CuSO ₄	6	4	12	20	15	25	0.2	подогреватель
32	NaNO ₃	5	2	10	15	10	20	0.1	холодильник

ЛИТЕРАТУРА

- 1 Фролов В.Ф., Флисюк О.М. Процессы и аппараты химической технологии. Учебное пособие для студентов заочной формы обучения.- СПб.: Синтез, 2008.- 468 с.
- 2 Дытнерский Ю.И. Процессы и аппараты химической технологии: Учебник для вузов. Ч. 1. М.: Химия, 1992.- 416 с.
- 3 Касаткин А.Г. Основные процессы и аппараты химической технологии.- М.: Альянс, 2004. -750 с.
- 4 Основные процессы и аппараты химической технологии. Пособие по курсовому проектированию/ под ред Ю.И. Дытнерского. М.:Химия, 1992.-272 с.
- 5 Романков П.Г., Фролов В.Ф., Флисюк О.М Методы расчета процессов и аппаратов химической технологии (примеры и задачи): Учебное пособие для вузов.- СПб.: Химиздат, 2009.- 544 с.
- 6 Зайцев И.Д., Асеев Г.Е. Физико-химические свойства бинарных многокомпонентных растворов и неорганических веществ. М.: Химия, 1987. -720 с.
- 7 Яблонский П.А., Озерова Н.В. Проектирование тепло- и массообменной аппаратуры химической промышленности: Учебное пособие.- СПб.: СПбГТИ(ТУ), 1993. 92 с.
- 8 Борисова Е.И., Круковский О.Н. Маркова А.В. Муратов О.В. Свойства жидкостей и газов: Методические указания к курсовому проектированию. СПб.: СПбГТИ(ТУ), 2001. 23 с.
- 9 Марков А.В., Круковский О.Н., Черникова О.В. Расчет и конструкции теплообменных аппаратов (краткие справочные данные для выполнения графической части курсового проекта): Учебное пособие по курсовому проектированию для студентов заочной формы обучения.- СПб.: СПбГТИ(ТУ), 2009.
- 10 Марков А.В., Маркова А.В. Неразборные теплообменники «труба в трубе» (конструкция и основные размеры): Методические указания.- СПб.: СПбГТИ(ТУ), 2001.-30 с.

Приложение А

Формулы для расчета теплофизических параметров растворов

Плотность растворов

Плотность растворов $\rho(t)$ в диапазоне температур $0 \div 100$ °C может быть вычислена по формуле:

$$\lg(\rho(t)) = \lg(\rho_0(t)) + (a_0 + a_1 \cdot t + a_2 \cdot t^2) \cdot x, \tag{A.1}$$

где ρ –плотность раствора, кг/м³;

x-массовая концентрация растворенного вещества, кг_раств.вешества/кг_раствора; t - температура, ${}^{o}C$;

 a_0 , a_1 , a_2 – коэффициенты, приведенные в таблице A1;

 ρ_0 – плотность воды, которая может быть рассчитана по формуле:

$$\rho_0(t) = 1000 - 0.063 \cdot t - 0.00355 \cdot t^2 \tag{A.2}$$

Таблина А 1

гаолица А.т			>
Растворенн	$a_o \cdot 10^4$	$a_1 \cdot 10^6$	$-a_2 \cdot 10^8$
ое вещество	u_0 ·10	aprio	$-u_2$ ·10
CaCl ₂	3518,10	463,51	270,30
K_2CO_3	3658,27	489,43	274,16
KCl	2579,40	657,08	402,14
КОН	3589,98	406,64	271,68
MgCl ₂	3372,00	791,13	324,26
NH ₄ Cl	1126,89	587,31	319,05
$(NH_4)_2SO_4$	2302,10	559,82	327,34
NaCl	2889,19	614,36	447,68
Na ₂ SO ₄	3669,39	701,87	398,19
Na ₂ CO ₃	4221,32	424,62	387,14
NaOH	3937,43	370,31	271,64
KNO ₃	2739,01	68,47	221,32
$MgSO_4$	4362,22	86,50	161,57
NH ₄ NO ₃	1904,83	- 248,78	77,72
CuSO ₄	4690,88	- 364,49	249,85
NaNO ₃	2978,91	- 48,30	125,17

Продолжение приложения А

Вязкость растворов

Вязкость $\mu(t)$ растворов в диапазоне температур $0 \div 100$ °C может быть вычислена по формуле:

$$\lg(\mu(t)) = \lg(\mu_0(t)) + (d_0 + d_1 \cdot t + d_2 \cdot t^2) \cdot x,$$
(A.3)

где µ – динамический коэффициент вязкости раствора, Па·с;

x-массовая концентрация растворенного вещества, кг_раств.вешества/кг_раствора; t - температура, ${}^{o}C$;

 d_0, d_1, d_2 – коэффициенты, приведенные в таблице A.2;

 μ_0 – вязкость воды, которая может быть рассчитана по формуле:

$$\mu_0(t) = 0.59849 \cdot (43.252 + t)^{-1.5423}$$
 (A.4)

Таблица А.2

таолица А.2		A	
Растворенн ое вещество	$d_o \cdot 10^2$	$d_l \cdot 10^4$	$d_2 \cdot 10^9$
CaCl ₂	148,28	-13,30	-3648,23
K ₂ CO ₃	146,67	4,80	-245,24
KCl	-8,76	71,30	9,97
КОН	118,70	17,06	-1098,35
MgCl ₂	217,86	-38,25	4170,79
NH ₄ Cl	-20,28	83,11	-910,40
$(NH_4)_2SO_4$	73,59	44,64	-409,06
NaCl	89,22	17,96	-45,46
Na ₂ SO ₄	147,69	8,58	-1356,01
Na ₂ CO ₃	310,88	-134,83	-2914,19
NaOH	347,89	-122,35	544,64
KNO ₃	-21,42	65,80	10,0
MgSO ₄	287,02	-74,88	130,7770
NH ₄ NO ₃	-18,55	94,08	150,0
CuSO ₄	206,92	-58,83	146,58
NaNO ₃	52,32	26,94	0,0

Теплоемкость растворов

Теплоемкость растворов c(t) в диапазоне температур $0 \div 100$ $^{\rm o}{\rm C}$ может быть вычислена по формуле:

$$c_{p}(t) = c_{p0}(t) + (B_{1} + B_{2} \cdot x + B_{3} \cdot t + B_{4} \cdot t^{2}) \cdot x,$$
(A.5)

где c_p – удельная теплоемкость раствора, Дж/кг/К;

x – массовая концентрация растворенного вещества, кг_раств.вешества/кг_раствора; t – температура, ${}^{o}C$;

 B_1, B_2, B_3, B_4 – коэффициенты, приведенные в таблице A.3;

 c_{p0} – теплоемкость воды, которая может быть рассчитана по формуле

$$c_{p0}(t) = 4223.6 + 2.476 \cdot t \cdot \lg(t/100)$$
 (A.6)

	_				1
1 ว	ΩП	IXI	пa	Δ	- 4
ı a	()J	I V I	на	/ \	

т иолици т г.э				AL / VIII.
Растворенн	$-B_1$	B_2	B_3	$-B_4 \cdot 10^3$
ое вещество	1	2		
CaCl ₂	6497,23	5563,05	6,36	17,92
K_2CO_3	5086,14	2161,24	6,62	5,51
KC1	5230,02	2939,03	-0,21	16,52
КОН	5343,49	2356,87	10,43	4,76
MgCl ₂	6530,30	4804,79	5,64	19,79
NH ₄ Cl	5087,59	3829,86	5,61	17,89
$(NH_4)_2SO_4$	4663,14	2938,54	5,52	7,43
NaCl	5479,43	7878,33	3,14	23,35
Na ₂ SO ₄	5364,78	5043,73	13,45	24,10
Na ₂ CO ₃	4187,41	4760,10	6,66	8,25
NaOH	5297,21	6942,68	14,84	14,15
KNO ₃	4293,94	2585,00	-3,69	5,26
MgSO ₄	6277,71	9435,9	12,00	7,90
NH ₄ NO ₃	3287,70	1136,94	-0,81	-6,5
CuSO ₄	5100,71	1967,28	15,46	-16,69
NaNO ₃	3369,37	2213,59	-0,3	91,95

Продолжение приложения А

Теплопроводность растворов

Теплопроводность $\lambda(t)$ растворов в диапазоне температур $0 \div 100$ °C может быть вычислена по формуле:

$$\lambda(t) = \lambda_0(t) \cdot (1 - \beta \cdot x) , \qquad (A.7)$$

где λ – теплопроводность, $B_{\text{Т}/\text{M}}/\text{K}$;

х – массовая концентрация растворенного вещества, кг_раств.вешества/кг_раствора;

t – температура, °С;

β- коэффициент, приведенный в таблице А.4;

 λ_0 – теплопроводность воды, которая может быть рассчитана по формуле (A4):

$$\lambda_0(t) = 0.5545 + 0.00246 \cdot t - 1.184 \cdot 10^{-5} \cdot t^2$$
 (A.8)

Таблица А.4

таолица тт			
Растворенное	$\beta \cdot 10^3$	Растворенн	β · 10^3
вещество	p·10	ое вещество	prio
CaCl ₂	69,74	Na ₂ SO ₄	425,72
K ₂ CO ₃	180,14	Na ₂ CO ₃	143,84
KCl	104,35	NaOH	-128,84
КОН	130,74	KNO ₃	334,59
MgCl ₂	493,17	MgSO ₄	250,07
NH ₄ Cl	245,88	NH ₄ NO ₃	605,04
$(NH_4)_2SO_4$	84,81	CuSO ₄	386,53
NaCl	156,97	NaNO ₃	138,88

Продолжение приложения А

Температура кипения растворов

Температура $t_{\text{кип}}(P)$ кипения растворов в диапазоне давлений $0.01 \div 0.5$ МПа может быть вычислена по формуле:

$$t_{\kappa un}(P) = \frac{1669.6}{10.0888 - \lg(P) + \lg(a \cdot x^2 + b \cdot x + 1)} - 228.4,$$
(A.9)

где $t_{\kappa un}$ – температура кипения раствора;

x – массовая концентрация растворенного вещества, кг_раств.вешества/кг_раствора; P – давление, Πa ;

а, b – коэффициенты, приведенные в таблице А.5

Таблица А.5

таолица А.3		4
Растворенн	<i>a</i> ⋅10	$b \cdot 10^{2}$
ое вещество		
CaCl ₂	-16,0	-56,5
K ₂ CO ₃	-13,0	-13,7
KCl	-6,9	-46,8
KOH	-17,0	-74,6
MgCl ₂	-35,0	-41,7
NH ₄ Cl	-4,7	-65,4
$(NH_4)_2SO_4$	-3,9	-25,6
NaCl	-11,0	-61,4
Na ₂ SO ₄	-3,9	-24,1
Na ₂ CO ₃	-1,7	-44,5
NaOH	-14,0	-98,2
KNO ₃	-3,4	-23,8
MgSO ₄	[-8,2]	-18,2
NH ₄ NO ₃	-3,1	-41,0
CuSO ₄	-8,2	71,0
NaNO ₃	-4,6	-39,0

Приложение Б

Справочные таблицы

Таблица Б.1- Свойства насыщенного водяного пара в зависимости от давления

таолица Б.т- С	<u> воиства н</u>	асыщенного в	водяного пара в		
Давление			Удельная	Удельная	Удельная
(абсолютное),	Темпера-	Плотность,	энтальпия	энтальпия	теплота
кгс/см ²	тура, °С	$\kappa\Gamma/M^3$		· •	,парообразова-
			кДж/кг	кДж/кг	ния r , кДж/кг
0,01	6,6	0,00760	27,7	2506	2478
0,015	12,7	0,01116	53,2	2518	2465
0,02	17,1	0,01465	71,6	2526	2455
0,025	20,7	0,01809	86,7	2533	2447
0,03	23,7	0,02149	99,3	2539	2440
0,04	28,6	0,02820	119,8	2548	2429
0,05	32,5	0,03481	136,2	2556	2420
0,06	35,8	0,04133	150,0	2562	2413
0,08	41,1	0,05420	172,2	2573	2400
0,10	45,4	0,06686	190,2	2581	2390
0,12	49,0	0,07937	205,3	2588	2382
0,15	53,6	0,09789	224,6	2596	2372
0,20	59,7	0,1283	250,1	2607	2358
0,30	68,7	0,1876	287,9	2620	2336
0,40	75,4	0,2456	315,9	2632	2320
0,50	80,9	0,3027	339,0	2642	2307
0,60	85,5	0,3590	358,2	2650	2296
0,70	89,3	0,4147	375,0	2657	2286
0,80	93,0	0,4699	389,7	2663	2278
0,90	96,2	0,5246	403,1	2668	2270
1,0	99,1	0,5790	415,2	2677	2264
1,2	104,2	0,6865	437,0	2686	2249
1,4	108,7	0,7931	456,3	2693	2237
1,6	112,7	0,898	473,1	2703	2227
1,8	116,3	1,003	483,6	2709	2217
2,0	119,6	1,107	502,4	2710	2208
3,0	132,9	1,618	558,9	2730	2171
4,0	142,9	2,120	601,1	2744	2141
5,0	151,1	2,614	637,7	2754	2117
6,0	158,1	3,104	667,9	2768	2095
7,0	164,2	3,591	694,3	2769	2075
8,0	169,6	4,075	718,4	2776	2057
9,0	174,5	4,536	740,0	2780	2040
10	179,0	4,037	759,6	2784	2024
11	183,2	5,516	778,1	2787	2009
12	187,1	5,996	795,3	2790	1995
13	190,7	6,474	811,2	2793	1984
14	194,1	6,952	826,7	2795	1968
15	197,4	7,431	840,9	2796	1956
	1	1. ,		1	1

Продолжение приложения Б

Таблица Б.2 - Свойства насыщенного водяного пара в зависимости от температуры

Таблица	Б.2 - Свойства	насыщенного	водяного пара 1	в зависимости	от температуры
			Удельная	Удельная	Удельная
Темпера	Давление	Плотность,	энтальпия		теплота
тура, °С	(абсолютное),	кг/м3		пара i"	парообразо-
Typa, C	кгс/см2	KI / WIS	жидкости т, кДж/кг	иди г кДж/кг	вания
_			' '		г, кДж/кг
0	0,0062	0,00484	0	2493,1	2493
5	0,0089	0,00680	20,95	2502,7	2482
10	0,0125	0,00940	41,90	2512,3	2470
15	0,0174	0,01283	62,85	2522,4	2460
20	0,0238	0,01729	83,80	2532,0	2448
25	0,0323	0,02304	104,75	2541,7	2437
30	0,0433	0,03036	125,70	2551,3	2426
35	0,0573	0,03960	146,65	2561,0	2414
40	0,0752	0,05114	167,60	2570,6	2403
45	0,0977	0,06543	188,55	2579,8	2391
50	0,1258	0,0830	209,50	2589,5	2380
55	0,1605	0,1043	230,45	2598,7	2368
60	0,2031	0,1301	251,40	2608,3	2357
65	0,2550	0,1611	272,35	2617,5	2345
70	0,3177	0,1979	293,30	2626,3	2333
75	0,393	0,2416	314,3	2636	2321
80	0,483	0,2929	335,2	2644	2310
85	0,590	0,3531	356,2	2653	2297
90	0,715	0,4229	377,1	2662	2285
95	0,862	0,5039	398,1	2671	2273
100	1,033	0,5970	419,0	2679	2260
105	1,232	0,7036	440,4	2687	2248
110	1,461	0,8254	461,3	2696	2234
115	1,724	0,9635	482,7	2704	2221
120	2,025	1,1199	504,1	2711	2207
	2,367	1,296	525,4		2194
130	2,755	1,494	546,8		2179
135	3,192	1,715	568,2		2165
140	3,685	1,962	589,5		2150
145	4,238	2,238	611,3	2747	2125
	4,855	2,543	632,7		2120
160	6,303	3,252	654,1	2765	2089
	8,080	4,113	719,8		2056
180	10,23	5,145	763,8		2021
190	12,80	6,378	808,3	2792	1984
200	15,85	7,840	852,7	2798	1945
210	19,56	9,567	897,9	2801	1904
220	23,66	11,600	943,2	2803	1860
230	28,53	13,98	989,3	2802	1813
240	34,13	16,76	1035	2799	1763
250	40,55	20,01	1082	2792	1710
230	ти,ээ	۷,01	1002	4194	1/10

Продолжение приложения Б

Таблица Б.3 -Поверхностное натяжение σ жидких веществ (в таблице приведены значения $\sigma \cdot 10^3$ в H/м)

приведены з								
Вешество	Темп		pa, °C					
Вещество	-20	0		40	60	80	100	120
Азотная кислота,	48,3	44,8	41,4	38,2	35,2	32,4	29,8	27,4
100 %								
,, ,, 50 %	_	68,2		62,2	58,8			47,5
Анилин	_	_	42,9	40,6	38,3	36	33,7	31,4
Ацетон	28,7	26,2	23,7	21,2		16,2		11,4
Бензол	_	31,7	29	26,3	23,7	21,3	18,8	16,4
- J	28	26,2	24,6	22,9	21,2		17,8	16
Вода	_	75,6	72,8	69,6	66,2	62,6	58,9	54,9
Глицерин, 50 %	_	72,4	69,6	66,4	63			51,7
Изопропиловый спирт		23,2	21,7	20,1	18,5	17	15,5	14
Кальция хлорид, 25 %	89,4	86,6	83,8	80,6	77,2	73,6	69,9	65,9
раствор								
Метиловый спирт, 100 %		24,5	22,6	20,9	19,3	17,6	15,7	13,6
Натр едкий, 50 %	_	_	130	130	129	129	128	128
раствор								
,, ,, 40 % ,,	_	_	108	108	107	107	106	106
,, ,, 30 % ,,	_	_	97	96,4	95,8	95,3	94,4	93,6
,, ,, 20 % ,,	_	_	85,8	85	84,7	83,2	81,3	79,6
,, ,, 10% ,,	_	_	77,3	76,1	75	73	70,7	69
Натрия хлорид, 20 %	-	82,6	79,8	76,6	73,2	69,6	65,9	61,9
раствор								
Нитробензол	_	46,4	43,9	41,4	39	36,7		32,2
Серная кислота 98 %	_	55,9	55,1	54,3	53,7	53,1	52,5	51,9
,, ,, 75 %	74,1	73,6	73,1	72,6	72,1	71,6	71,1	70,6
,, ,, 60 %	77,3	76,7	76,1	75,4	74,5	73,6	72,7	71,8
Сероуглерод	38,3	35,3	32,3	29,4	26,5	23,6	20,7	17,8
Соляная кислота, 30 %	_	72,6	69,8	66,6	63,2	59,6	55,9	51,9
Тетрахлорид углерода	31	29,5	26,9	24,5	22	19,6	17,3	15,1
	33	30,7	28,5	26,2	23,8	21,5	19,4	17,3
Уксусная кислота, 100 %			27,8		_		19,8	18
"	_	43	40	37	33	30	27	24
50 %	20 1	2.5	00 5		• • •	26-		21.2
Хлорбензол	38,4	36						21,8
Хлороформ	32,8	30	27,2	24,4	21,7	19		13,6
Этиловый спирт, 100 %	25,7	24	22,3	20,6	19	17,3	15,5	13,4
" 60 %	_	28	27	25	23	22	20	18
,, 40 %	_	32	30	28	26	24	22	19

Таблица Б.4 -Теплопроводность твердых материалов при 0–100 °C

блица Б.4 - Геплопроводность	твердых материа	алов при 0–100
	Плотность	
	(для сыпучих материалов	Теппопровол-
Материал	материалов	ность,
Материал	насыпная	ность, Вт/(м·К)
	плотность),	D17(M·K)
	кг/м3	
Асбест	600	0,151
Бетон	2 300	1,28
Войлок шерстяной	300	0,047
Древесина (сосна) поперек	600	0,140-0,174
волокон		
,, " вдоль волокон	600	0,384
Древесные опилки	230	0,070-0,093
Кладка из обыкновенного	1 700	0,698-0,814
кирпича		
", " огнеупорного	1 840	1,05
кирпича		
,, ,, изоляционного	600	0,116-0,209
кирпича		
Краска масляная		0,233
Лед	920	2,33
Накипь, водяной камень	_	1,16–3,49
Пенопласт	30	0,047
Песок сухой	1 500	0,349-0,814
Пробковая мелочь	160	0,047
Резина пористая	2 500	0,060
Ржавчина (окалина)	_	1,16
Совелит	450	0,098
Стекло	2 500	0,698–0,814
Стеклянная вата	200	0,035–0,070
Текстолит	1 380	0,244
Шлаковая вата	250	0,076
Эмаль		0,87–1,16
Металлы	2 330	0,07 1,10
Алюминий	2 700	203,5
Бронза	8 000	64,0
латунь	8 500	93,0
Медь	8 800	384
	11 400	34,9
Свинец		46,5
Сталь		
,, нержавеющая	7 900	17,5
Чугун	7 500	46,5–93

Продолжение приложения Б

Таблица Б.5 - Среднее значение тепловой проводимости загрязнений стенок

	Тепловая
	проводимость
Теплоносители	загрязнений
	стенок,
	$BT/(M^2 \cdot K)$
Вода загрязненная	1400-1860*
" среднего качества	1860-2900*
" хорошего качества	2900-5800*
" очищенная	2900-5800*
" дистиллированная	11600
Нефтепродукты чистые, масла, пары	2900
хладагентов	
Нефтепродукты сырые	1160
Органические жидкости, рассолы, жидкие	5800
хладагенты	
Водяной пар (с содержанием масла)	5800
Органические пары	11600
Воздух	2800
* Для воды меньшие значения тепло	вой проводимости
загрязнений соответствуют более высоким	гтемпературам.

Приложение В

Основные размеры и технические характеристики оборудования

Таблица В.1- Выпарной аппарат с естественной циркуляцией и вынесенной греющей

камерой

Поверх	ность	1				
теплоо						
	альная)			Диаметр		Macca
M^2 ,	при	Диаметр	Диаметр	цирку-	Высота	аппара-
диамет	pe	греющей	сепара-	ляцион-	аппара-	та,
трубы 3	38×2	камеры	тора D_1 ,	ной тру-	та Н,	не более,
и длине	е, мм	D, не	не менее,	бы D ₂ ,	не более, мм	KF
1=4000	1=5000	менее, мм	ММ	не более, мм		
10	-	400	600	200	12000	1700
16	-	400	800	250	12000	2500
25	-	600	1000	300	12500	3000
40	-	600	1200	400	12500	4700
63	-	800	1600	500	13000	7500
100	112	1000	1800	600	13000	8500
125	140	1000	2200	700	13500	11500
160	180	1200	2400	700	13500	12000
200	224	1200	2800	800	14500	14800
250	280	1400	3200	900	14500	15000
315	355	1600	3600	1000	15000	21000
-	400	1600	3800	1000	15000	26500
_ \	450	1600	4000	1000	15000	31800
-	500	1600	4500	1200	16500	33000
-	560	1800	4500	1200	17000	38300
-	630	1800	5000	1200	17000	40000
-	710	2000	5000	1400	18000	50000
-	800	2000	5600	1400	18000	55000

Продолжение приложения В

Таблица В.2 - Основные размеры баромет				•					
Размеры	Внутренний диаметр конденсатора $d_{6\kappa}$, мм								
	500	600	800	1000	1200	1600	2000		
		_		_					
Толщина стенки аппарата S	5	5	5	6	6	6	10		
Расстояние от верхней полки до крышки	1300	1300	1300	1300	1300	1300	1300		
аппарата а					A				
Расстояние от верхней полки до днища	1200	1200	1200	1200	1200	1200	1200		
аппарата г					4.7		<i>JP</i>		
Ширина полки b	-	-	500	650	750	1000	1250		
Расстояние между осями конденсатора и						A STATE OF THE STA			
ловушки				\checkmark \rightarrow					
K_1	675	725	950	1100	1200	1450	1650		
K_2	-	-	835	935	1095	1355	1660		
Высота установки Н	4300	4550	5080	5680	6220	7530	8500		
Ширина установки Т	1300	1400	2350	2600	2975	3200	3450		
Диаметр ловушки D	400	400	500	500	600	800	800		
Высота ловушки h	1440	1440	1700	1900	2100	2300	2300		
Диаметр ловушки D_1	-	-	400	500	500	600	800		
Высота ловушки h ₁	_ < \	F (1350	1350	1400	1450	1550		
Расстояние между полками									
a_1	220	260	200	250	300	400	500		
a_2	260	300	260	320	400	500	650		
a_3	320	360	320	400	480	640	800		
a ₄	360	400	380	475	575	750	950		
a_5	390	430	440	550	660	880	1070		
Условные проходы штуцеров:									
для входа пара (А)	300	350	350	400	450	600	800		
для входа воды (Б)	100	125	200	200	250	300	400		
для выхода парогазовой смеси (В)	80	100	125	150	200	200	250		
для барометрической трубы (Г)	125	150	200	200	250	300	400		
воздушник (С)		-	25	25	25	25	25		
для входа парогазовой смеси (И)	80	100	180	150	260	200	250		
для выхода парогазовой смеси (Ж)	50	70	80	100	150	200	250		
для барометрической трубы (Е)	50	50	70	70	80	80	100		

Продолжение приложения В

Таблица В.3 -Техническая характеристика вакуум-насосов типа ВВН

		2 2	
Типоразмер	Остаточное давление, мм рт.ст.	Производитель- ность, м ³ /мин	Мощность на валу, кВт
DDII 0.75	110	0.75	1.2
BBH-0,75	110	0,75	1,3
BBH-1,5	110	1,5	2,1
BBH-3	75	3	6,5
BBH-6	38	6	12,5
BBH-12	23	12	20
BBH-25	15	25	48
BBH-50	15	50	94
		A	

Продолжение приложения В

Таблица В.4 - Основные характеристики теплообменников ТН с трубами 25 × 2 мм

<u>Гаолица</u> Е	3.4 - U	сновн	ые ха	рактер	ристин	си теп.	ЛОООМ	енник			рами	23 × 2 I	ИM	
Диа-		Длина труб L, м							Проходное					
метр	Чис-								сечение, м ²					
кожуха	ЛО	1,0	1,5	2,0	3,0	4,0	6,0	9,0						
внутрен-	труб						2		S_{T}	S_{MT} .	Ѕв.п	\cdot n_p	l, mm	
ний	П	Поверхность теплообмена F, м ²							10^{2}	10^2	10^2			
D, мм														
	Одноходовые													
159	13	1,0	1,5	2,0	3,0		_	_	0,5	0,8		5	100	
273	37	3,0	4,5	6,0	9,0	_	_	_	1,3	1,1	0,9	7	130	
325	62	_	7,5	10,0	14,5	19,5	_	_	2,1	2,9	<i>j</i> -	9	180	
400	111	_	_	17	26	35	52	_	3,8	3,1	2,0	11	250	
600	257			40	61	81	121	_	8,9	5,3	4,0	17	300	
800	465			73	109	146	219	329	16,1	7,6	6,9	23	350	
1000	747	_	_	_	176	235	352	528	25,9	14,3	10,6	29	520	
1200	1083	_	_	_	_	340	510	765	37,5	17,9	16,4	35	550	
Двухходо	Двухходовые													
325	56	_	6,5	9,0	13,0	17,5	_		1,0	1,5	1,3	8	180	
400	100	_	_	16,0	24,0	31,0	47	-	1,7	2,5	2,0	10	250	
600	240	_	_	38	57	75	113	_	4,2	4,5	4,0	16	300	
800	442			69	104	139	208	312	7,7	7,0	6,5	22	350	
1000	718			_	169	226	338	507	12,4	13,0	10,6	28	520	
1200	1048				_	329	494	740	17,9	16,5	16,4	34	550	
Четырехх	ходові	ые		•	•		•	•	•	•			•	
600	206			32	49	65	97	_	1,8	4,5	4,0	14	300	
800	404			63	95	127	190	285	3,0	7,0	6,5	20	350	
1000	666				157	209	314	471	5,5	13,0	10,6	26	520	
1200	986				_	310	464	697	8,4	16,5	16,4	32	550	
Шестиходовые														
600	196			31	46	61	91	_	1,1	4,5	3,7	14	300	
800	384			60	90	121	181	271	2,2	7,0	7,0	20	350	
1000	642			_	151	202	302	454	3,6	13,0	10,2	26	520	
1200	958	_	_	_	-	301	451	677	5,2	16,5	14,2	32	550	
-	All P													

St, Smt, Sb.п – проходные сечения трубного, межтрубного пространства и в вырезе перегородки; n_p – число рядов труб по вертикали для горизонтальных аппаратов; 1 – расстояние между перегородками

УЧЕБНОЕ ПОСОБИЕ

БАННЫХ Ольга Петровна, **БОРИСОВА** Екатерина Игоревна, **КОНСТАНТИНОВ** Валерий Анатольевич, **КРУКОВСКИЙ** Олег Николаевич, **МУРАТОВ** Олег Вадимович, **ФРОЛОВ** Владимир Федорович, **ФОМИН** Валерий Васильевич

МЕТОДЫ РАСЧЕТА ПРОЦЕССОВ И АППАРАТОВ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ

РТП ИК «Синтез» Московский пр.,26